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Part I

This note is a discussion of the first part of Schroedinger’s
1926 review paper (in English) [2] which arose in begin-
ning to explain spectral lines of hydrogen as frequency
differences, and to approach some relativistic ideas of
Bruce Westbury.

Schroedinger posited for a an electron of mass µ and
charge e at the point (x, y, z) with the nucleus at the
origin, a potential function V = −e2/r with r the dis-
tance from the origin. He wishes to have a function
W (x, y, z, t) with gradient (px, py, pz,−E); and chose

W (x, y, z, t) = −Et+ S(x, y, z),

imagining a standing electromagnetic wave with ampli-
tude A(x, y, z) given

Ψ = A(x, y, z)sin(
2π

h
W (x, y, z, t))

with A, S are real functions, h Planck’s constant. He
stated that the ‘standard wave equation’ it should sat-
isfy has

∆Ψ =
1

u2
(
∂

∂t
)2Ψ

with u the speed of motion of the level sets given by
Et = S(x, y, z).

Here u is the ratio between the time partial derivative
and the magnitude of the spacial gradient E/|grad(W )|
which calculates to E/

√
2µ(E − V ) if µ is the electron

mass.
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If we define constants

β =
−8π2µe2

h2

α =
−8π2µE

h2

the condition they must satisfy, therefore, is that α+β/r
is an eigenfunction of the Laplacian.

The connected rotation group of three space operates
naturally on the Riemann sphere, which can be viewed
as the cosets of a Borel subgroup, and all the repre-
sentations we will look at extend to the full connected
automorphism group, the group holomorphic automor-
phisms of the Riemann sphere, after complexification if
necessary.

The vector bundles O(j) for j an even number are com-
pletely natural, they are equivariant for the full auto-
morphism group of the Riemann sphere, because they
are tensor powers of the canonical line bundle. More-
over, again for even values j = 2l, the global sections
are the complexification of the 2l+ 1-dimensional space
of real harmonic polynomials which are homogeneous of
degree l.
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Note that this implies that the complex polynomials of
degree 2l in two variables are the complexification of a
space of real polynomials of degree l in three variables.
To see that the dimensions are right, you can use the
fact that any homogeneous polynomial of degree l in
three variables is uniquely a a sum of powers of r2 times
homogeneous harmonic polynomials of lower degree [1].

Thus the sequence of dimensions of the homogeneous
harmonic polynomials of degree l is

1,

(
3
2

)
,

(
4
2

)
−1,

(
5
2

)
−
(

3
2

)
,

(
6
2

)
−(

(
4
2

)
−1)−1, ...

which is indeed the sequence of odd numbers. It follows
that all are irreducible.
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O(j) is not fully equivariant if j is odd.

There is no similar interpretation of the global sections
of O(j) when j is odd, and indeed the automorphism
group of the projective line, nor even the special orthog-
onal group which preserves the Riemannian metric, do
not act in a natural way on the total space of the line
bundle with section sheaf O(j) for j odd.

The automorphism group of any line bundle maps to
the automorphism group of the base manifold with ker-
nel automorphisms of the line bundle which fix the zero
section, just nonzero scalars under multiplication in the
case of a projective variety, resulting in a central exten-
sion group acting on the line bundle, not the original
group; the resulting central extension is nontrivial when
j is odd.

Each automorphism g does lift to a pair of linear auto-
morphisms of determinant one of C2, negatives of each
other, and choosing to label one of them s(g) one has
s(g)s(h) = z(g, h)s(gh) for the appropriate central co-
cycle z taking values in {1,−1}. This gives an action
on global sections of O(1) which induces an action on
the vector bundle itself and therefore all tensor pow-
ers. Such a cocycle adjusts what is called the ‘gauge’ in
Weyl’s book. Or, another way of viewing the global sec-
tions of O(j) for odd j as representations having to do
with the Riemann sphere is to interpret them as repre-
sentations of the Lie algebra rather than the Lie group,
that is, representations of the global sections of the an-
ticanonical line bundle.
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The complex vector spaces Γ(P1,O(j)) for j odd, how-
ever, are even dimensional, and if we interpret them as
representations of the three dimensional Lie algebra of
vector fields of P1 they restrict to real irreducible rep-
resentations of twice the dimension 2(j + 1) (a multiple
of 4) whose endomorphism algebra is just the field C.
That is, the complex number field could arise as the
endomorphism ring of the global sections of O(1) as a
representation of the vector field Lie algebra of the Rie-
mann sphere, and this is so even if initially we do not use
complex numbers, and consider vector fields preserving
the Riemannian metric. We will see later a more natural
way that complex numbers will arise in this context.
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Representations of so3

Although this is trivial, it makes sense to go through
some of the representation spaces just to settle the no-
tational conventions. As one lists the orbitals according
to values of l = 0, 1

2 , 1, 3
2 ... the names s, p, d, f, ... are

given to the integral values of l. The wave functions for
l = 0, those type s, are the constants.

For l = 1
2 they need a cocycle z(g, h) or can be inter-

preted as representations of the Lie algebra; and belong
to a four dimensional vector space with a complex struc-
ture.

For l = 1, those of type p correspond to just real linear
forms on three space (of dimension three), and the com-
plexification is the space of holomorphic vector fields on
the Riemann sphere (dual to the canonical line bundle).

For l = 3/2, they need a cocycle and belong to an eight-
dimensional real vector space, with a complex structure.

For l = 2 the so-called type d, are the five-dimensional
space of real harmonic functions which are among the
homogeneous polynomials of degree two in three vari-
ables. This is the orthogonal complement of the line
spanned by r2 where r is the distance from the origin,
under an invariant quadratic form, and its complexifica-
tion is the global sections of O(3);
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For l = 5/2 is a representation of dimension 12 with a
complex structure.

For l = 3 those of type f there is the seven dimensional
space of harmonic polynomials which are homogeneous
of degree three in three variables, orthogonal to r2 times
haromonic homogeneous of degree one.

For l = 7/2 is just a sixteen dimensional representation
with a complex structure.

For l = 4 those of type g, the nine dimensional space of
harmonics polynomials which which are homogeneous of
degree four and which are orthognal both to r4 and to
r2 times the harmonics homogeneous of degree two, and
so-on.
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Eigenfunctions of the Laplacian

The action of the Laplacian on products sf(r) with s a
homogeneous polynomial of degree l which is a harmonic
and f analytic in r is easily calculated. The action of
∆ on the powers of r in k variables is ∆(ri) = i(i− 2 +
k)ri−2, and so for s harmonic homogeneous of degree l

∆(ris) = ( i(i− 1) + (k − 1 + 2l) i )ri−2s

Then if f is an analytic function of r and s a harmonic
analytic function the Laplacian operator acts on the
product fs by

= (
d

dr
)2 +

k − 1 + 2l(s)

r
(
d

dr
).

where the term l(s) can be understood as the Euler
derivation acting on the factor s while commuting with
functions of r (the actual Casimir operator in that sense
is l(l + 1)).

Now ∆ has an eigenfunction of the form α + β/r just
when r∆ has eigenfunction αr + β.
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The action of r∆ on functions sf where where s is har-
monic homogeneous of degree l is

r(
d

dr
)2 + (k − 1 + 2l)(

d

dr
).

Take k = 3, the number of variables. For any number
λ, r∆ acts on rmeλrs by

λ2r + 2λn+ lower order

for n = m + l + 1. If we take α = λ2 the difference
r∆ − αr − β preserves the filtration by the span of
eλrs, reλrs, ..., rmeλrs, acting the associated graded vec-
tor space by 2λ(m+ l + 1)− β in degree m. For any m
we may take β = 2λ(m+ l+ 1) and the span maps onto
the span of just eλrs, ...rm−1eλrs with one dimensional
kernel spanned by

e
1
2nβ r

n−l−1∑
i=0

(
n+ l

n− l − 1− i

) ( 1
nβ r)

i

i!
s.

The relation α = β2

4n2 above gives energies

E =
−2π2µe4

h2n2

Note that β is negative.

This determines a space of eigenfunctions of dimension
2l + 1 for each pair of positive integers (l, n) with l <
n, in which the restriction of the wave function to a
sphere centered at the origin depends only on l while
the restriction to a radial line depends on both n and l.
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Dividing by (4πε)2, since the potential in units of meters,
kilograms, seconds is really −e2/(4πεr), and dividing by
h gives the sequence of frequencies in cycles per second

µe4

8ε2h3n2
.

Using
h = 6.626 ∗ 10−34

e = 1.602 ∗ 10−19

µ = 9.109 ∗ 10−31

ε = 8.854 ∗ 10−12

gives
3.29/n2

petahertz.

The frequency differences of the 3.29/n2 for n = 1, 2, 3, ...
include the consecutive sequence

0.72, 0.76, 2.45, 2.9, 3.06, 3.13

petahertz. These do appear in spectrographs of hydro-
gen on the internet, of these six in particular the last
four in the ultraviolet Lyman series and the first two in
the partly visible (nearly infrared) Ballmer series.
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I should say that the equation which Schroedinger de-
rives had been known before empirically by Ballmer,
Rydberg, and Bohr; it is, in my opinion, an impressive
accomplishment to have found a wave equation which
appears to explain this spectrum.

The photo of the spectrum, found in Google Images,
is from chemguide.co.uk. It is not an actual spectrum,
but is missing the fine structure sometimes attributed
to ‘spin-momentum interaction,’ something we’ll talk
about later on here.

Another thing we’ll discuss later on is that the solu-
tions presented here are not the most general solution
of Schroedinger’s equation, even under the requirement
of entire analyticity.
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Attempts to explain the periodic table

The numbers n and l are typically called the ‘main’
and ‘azimuthal’ quantum numbers, and the shape of the
wave function corresponding to each value l = 0, 1, 2, 3, 4, ...
are named with the letters s, p, d, f, g, h, ... . One very
rough interpretation of the periodic table would start
with the observation that if we consider Helium to be
an Alkaline Earth Metal, and number the Alkaline Earth
Metals m = 1, 2, 3, 4... for Helium, Beryllium, Magne-
sium, Calcium, etc, then the atomic number a(m) of
the m’th Alkaline Earth Metal is given by the formula

a(m) =


(
m+ 2

3

)
, m even(

m+ 1
3

)
+ 2(m+1

2 )2, m odd
.

Thus, the even-numbered Alkaline Earth Metals have
atomic number which is the equal to a number of three-
element subsets.

m

(
m+ 2

3

)
m′th Alkaline Earth Metal Atomic number

2 4 Be 4
4 20 Ca 20
6 56 Ba 56
8 120 Ubn 120
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Although Ubn, Unbilinium, has not been discovered, the
notion that the periodic table is understood this way is
supported by articles saying that Unbilinium should be
considered to be an Alkaline Earth Metal.

The elements whose atomic number, plus twice a square,
is the atomic number of the next Alkaline Earth Metal,
are those which occur in the rightmost position in a
‘period’ of the periodic table. For example the Noble
Gasses are those elements whose atomic number is 12+12

less than an Alkaline Earth Metal, and Zinc, Cadmium,
Mercury, and Copernicum have atomic numbers

38− 22 − 22, 56− 22 − 22, 88− 22 − 22, 120− 22 − 22.

For Radium of atomic number 88 the fact that Ytter-
bium has atomic number 88−32−32 would say it is the
last element of its period; in fact it is the next-to-last ele-
ment in the Lanthanide series, having similar properties
to Lutetium; and Wikipeida says of this issue “Actual
electronic configurations may be slihtly different than
predicted by the Aufbau principle.”
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What is consistent both with the number theoretic struc-
ture of the periodic table and with observed spectral
lines is the so-called Aufbau principle, that for each
atomic number k and each value of l, the range of values
of n that actually occur, which, as we know, must be at
least l + 1, do not in the unexcited state exceed N − l
where N is the number of Alkaline Earth Metals (in-
cluding Helium) with atomic number less than or equal
to k, by more than the number δ, where we let δ = 0 if
2(l+ 1)2 does not exceed the atomic number of the next
Alkaline Earth Metal, and otherwise δ = 1.

Thinking of C×, the multipicative group of C, acting
on scalars in C2 by T (x, y) = (Tx, T−1y), the induced
action on global sections of O(j) of an element T ∈ C×
is equivalent to the action on the isomorphic space of
monomials xj, xj−1y, ..., yj in which T acts by T on x

and T−1 on y.
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We denote by ej(T ) the trace of this action, and so we
are just defining a Laurent polynomial

ej(T ) = T−j + T−j+2 + ...+ T j. (1)

There are no other irreducible representations of Sl2(C).

The tensor product of representations induces the prod-
uct of characters, and so we can determine how a tensor
product of two irreducible representations decomposes
into a sum of irreducible representations, just by looking
at the subring of the Laurent polynomial ring generated
by the ej(T ). The structure constants are determined by
the rule that for β ≤ α

eα(T )eβ(T ) = eα+β(T ) + eα+β−2(T ) + ...+ eα−β(T ).

This rule, which is just an identity in the Laurent poly-
nomial ring, is called the ‘Clebsch-Gordan rule.’ We can
double check this identity by setting T = 1, where it says

(α+1)(β+1) = (α+β+1)+(α+β−1)+...+(α−β+1).

This corresponds to the fact that the summands of a
tensor product must add up to the product of the di-
mensions.

An interesting coincidence is that the Clebsch Gordan
rule happens to agree with what happens when just two
spaces of homogeneous harmonic polynomials are mul-
tiplied. That is, if I choose two numbers i, j and con-
sider the spaces Hi,Hj of homogeneous real harmonic
polynomials of degree i and j, then these occur within
the polynomal algebra, and when multiplied, decompose
into a direct sum of Hαr

i+j−α.
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Here r is the radial function, and i + j − α turns out
always to be an even number. Moreover when one com-
plexifies, keeping track only of the SO3 action, which
makes sense in these particular complexified representa-
tions, the resulting decomposition agrees with the Clebsch-
Gordan rule. To see this, all that one has to check is that
each number α occurs only once, as we knew that the Hi

complexify to the representation with character e2i(L).
It may be this coincidence which led to early attempts
to understand atoms using Clebsch-Gordan.

We will later use a slight generalization of Clebsch-Gordan,
viewing radial functions as being in our base ring, namely

eα(L)eβ(L) = eα+β(L) + r2eα+β−2(L) + ...+ r2βeα−β(L)

for α ≥ β.

Schroedinger comments

‘the so-called azimuthal quantum number ...turns out to be
half-integer ... in what way the electron spin has to be taken
into account ... is yet unknown.’
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Although we’ll introduce some motivation for doing this
later, let us now, following Weyl’s notion of using what
he called ‘vector valued wave functions,’ consider our
representations to be really representations of the left-
most factor in the cartesian product SO3×1 in the carte-
sian product group SO3(R) × SU2(C). Representations
of the larger group are also representations of SU2(C)×
SU2(C), and all extend to representations of SL2(C) ×
SL2(C). Restricted to a maximal torus C× × C×, such
a representation decomposes into a direct sum of lines
upon which a point (L, S) acts by a monomial L2lSs for
integers l, s. In fact the irreducible representations of a
cartesian product are the tensor products of separate ir-
reducible representations, so that the characters of the
irreducible representations of SU2(C)×SU2(C) are just
the ei(L)ej(S) for i, j ≥ 0.

To be very rigorous, if we are really talking about rep-
resentations of SU2(C) × SU2(C) we should consider L
and S to belong to the unit circle because the torus is
only U(1)×U(1) ⊂ C××C×. This will never cause any
difficulty.
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The irreducible representations which come from rep-
resentations of SO3(R) × SU2(C) are those for which
the first subscript is even. Thus they have characters
e2l(L)es(S) where s, l ≥ 0 are integers. The Clebsh-
Gordan rule of course applies to each factor separately,
or one may deduce it by working in the ring of Laurent
polynomials Z[L2, L−2, S, S−1]. No odd powers of L are
going to occur anywhere and the use of even powers is
perhaps only to remind us that the representations are
those of SO3(R)× SU2(C).

Writing the monomials that occur as L2iSj, the mono-
mial in e2l(L)es(S) that occurs with maximum value of
i and j is just L2lSs. This is called the ‘highest weight
character.’

If we are given a Laurent polynomial in L2 and S, and
wish to decompose it as a sum of e2l(L)es(S) there is at
most one way to do this; it can be done by choosing the
highest weight, that is, the monomial L2iSj that occurs
which is maximum for either of the lexicographic order-
ings on pairs (i, j). One is assured that the character
is of the form e2i(L)ej(S) + χ and so one can subtract
e2i(L)ej(S), and in this way is an easy inductive method
generalizing Clebsch-Gordan, by which any character
whatsoever can be decomposed into a sum of irreducible
characters.
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Although we have not yet attempted to give any ex-
planation of why the group SO3(R) × SU2(C) should
be acting on the space of wave functions (or, as later we
may suggest, wave forms), both the Periodic Table, with
respect to unexcited atoms, and the individual spectral
data, for excited atoms, is consistent with the simple
Aufbau principle mentioned above. A little later I’ll re-
turn to the issue of existing explanations of the principle,
arguing that it appears to be unexplained.

Since we may want to consider ions, instead of letting
k be the atomic number, let’s let kp be the number of
protons and k the number of electrons. If we work using
the radial functions as coefficients, replacing the con-
stant β by kpβ in the radial eigenfunction (in the sense
of eigenvector, not eigenvalue), to account for the fact
that the potential function is −kpe2/r we have

fkp,n,l = e
kp
2nβ r

n−l−1∑
i=0

(
n+ l

n− l − 1− i

)
(
kp
n β r)

i

i!
. (2)

This is the radial solution for the Hydrogen atom but
we’ve multiplied the coefficient β by kp since now there
are kp protons. The number β is −4.2042; note that
β/(4πε) = 3.78 ∗ 1010m−1 is twice the reciprocal of the
Bohr radius of the Hydrogen atom.
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Let’s first consider the direct sum of the wave functions
of individual electrons, and work over the ring of an-
alytic functions of r. For kp fixed, any endomorphism
φ of the space of Shroedinger solutions which preserves
the filtration by n and l and also a filtration compatible
with the C× × C× action has a trace element

χ(S, L, fkp,n,l, φ) =
∞∑

ml=−∞

∞∑
ms=−∞

cn,l,ms,ml
(φ)S2mlL2ms (3)

where the cn,l,ms,ml
are just formal power series (expres-

sions) in all the fk,n,l. By including the argument fkp,n,l
on the left I mean that if we interpret these symbols
all as numbers, the left side will depend upon their val-
ues. The subscripts of l and s on the numbers ml and
ms have no meaning except to say that ml and ms are
two possibly different numbers while we’ve followed the
convention of denoting both by m. Also note that by
these conventions ml will be an integer while ms will be
a half-integer.

The first case we’ll look at, when φ is the identity, is just

χ(S, L, fkp,n,l, 1) =
∞∑
l=0

∞∑
n=l+1

fkp,n,les(S)e2l(L) (4)
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While we think of e2l(L) as the character of the the space
of homogeneous harmonic polynomials of degree l in the
three variables x, y, z; yet es(S) still needs to be given
a physical interpetation somehow. While the trace el-
ement is abstractly the character of the tensor product
with the function ring of the space of all homogeneous
polynomials of degree s in two complex variables u and
v, yet is not justified to write things this way not know-
ing what the two complex variables u and v may rep-
resent; in in a later section I’ll return to this mystery.

If we consider only terms where n ≤ M with M is an
upper bound of our choice, such as the one described by
the Aufbau, the result is a Laurent polynomial in S, L
and the fkp,n,l which includes no negative powers of any
fkp,n,l.

While there is no great harm in thinking of the fkp,n,l as
analytic functions of a single variable r; then we’ve speci-
fied a linear combination of characters of representations
free of finite rank over the ring of analytic functions in
the variable r; however, keeping them separate also al-
lows evaluating different choices of the fkp,n,l at different
values of r and describing traces of endomorphisms.
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If we now consider the whole space to be a space of dif-
ferential forms, then we would consider exterior powers
of the representation. It follows just from the fact that
exterior powers convert sums to tensor products that
the series

e −
∑∞

j=0((−T )j/j)χ(Sj, Lj, f jkp,n,l, φ
j) (5)

is the sum a0 + a1T + a2T
2... in which ai is the trace

series (4) acting upon the i’th exterior power of the rep-
resentation whose character is χ.

I presented the expressions in a pretentious way, per-
haps. When they are combined, for instance, when φ is
just the identity, they yield the product 1+fkp,n,lS

εL2αT

for and for ε, α integers with ε = ±1 and −2l ≤ α ≤ 2l
and ak is just the k’th elementary symmetric polynomial
in the quantities fkp,n,lS

εL2αT , though this may be an
unenlightening way to write it.

Combining (1),(2),(4), and (5) with k = kp expresses the
desired character ak as an analytic function in S, L, and
r, or if we like as an analytic function of S, L and all the
fkp,n,l. Using the highest weight method, each coefficient
ak can be written as a polynomial in the es(S) and e2l(L)
describing then the decomposition of the k’th exterior
power of the space of Schroedinger solutions.
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For instance for Nitrogen of atomic number 7, with the
limit M taken according to the Aufbau restriction the
result of combining (1),(2),(4),(5) gives a Laurent poly-
nomial in S, L and the fk,n,l; decomposing the result
into irreducible characters by the highest weight method
gives

f 2
7,1,0f

2
7,2,0f

3
7,2,1(e3(S) + e1(S)e2(L) + e1(S)e4(L))

+f 2
7,1,0f7,2,0f

4
7,2,1(e3(S)e2(L) + e1(S)e2(L) + e1(S)e4(L) + e1(S))

+f 2
7,1,0f

5
7,2,1e1(S)e2(L).

If we imagine the electrons do not affect each other, the
energy level would be proportional to the (negative) sum
of reciprocal squares of the second subscript, and would
be the same for wave functions in any of the spaces with
these characters. There is no reason to presume that
wave functions belonging to the eight irreducible compo-
nents would have the same energy level if one didn’t as-
sume the absence of electron to electron repulsion; hence
a more precise version of the Aufbau (which we’ll state
in the next section) records the observation that this is
not true, and that in this case the terms in the first line
above have lower energy level than the others, and a
rule called Hund’s rule says that among these, the term
es(S)e2l(L) with (s, l) maximum in the lexicographic or-
der has lowest energy.
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The Hund rule agrees with Schroedinger’s equation, the
javascript spectrograph which we’ll introduce later can
show this, but unlike the Schroedinger equation no such
combinatorial rule as the Hund rule extends to a mean-
ingful assertion about the ordering of any but the lowest
term. Also the Hund rule can disagree with experiment
even for the lowest term symbol of any but the ground
electron configuration.

An example the configuration 1s22p2 for Beryllium where
the Hund rule applied to this excited configuration and
the Schroedinger equation both predict the order e2(S)e2(L), e4(L), 1
both disagreeing with the order consistent with the spec-
trum and Stern-Gerlach which is e4(L), e2(S)e2(L), 1

There are other cases such as Boron 1s22s12p2 where
the the Schroedinger equation agrees with the ordering
consistent with the spectrum and Stern-Gerlach, which
is e3(S)e2(L), e1(S)e4(L), e1(S), e1(S)e2(L) while the ex-
tension of Hund’s rule would reverse the last two terms.
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An abbreviated notation called ‘term notation’ is used
in Chemistry to denote such characters. Each charac-
ter es(S) is described using its dimension, also equal to
the value at 1, namely es(1) = s + 1, as a preceding
superscript. Each character e2l(L) is described by at-
tributing to each possible number l = 0, 1, 2, 3, the letter
S, P,D, F,G,H, ... And a product character es(S)e2l(L)
is described by putting the preceding superscript on the
letter. Thus the character

e3(S) + e1(S)e2(L) + e1(S)e4(L)

is described as the conjunction of the three ‘terms’

4S,2 P,2D.

When as in this case, the sum of the l values of the
coefficients fk,n,l is odd, one also appends a superscript
letter ‘o’ standing for the word ‘odd’ giving in this case

4S◦, 2P ◦, 2D◦.

The circle is a useful convention; it indicates of course
that the space of wave functions comprising the repre-
sentation is a space of odd functions with respect to
negating x, y, z, and it will turn out that transitions are
not observed experimentally except between odd and
even functions in this sense.
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The preceding superscript on a term symbol is some-
times called the ‘multiplicity’ of the term symbol; in the
most common case when the multiplicity of the corre-
sponding irreducible representation of SO3×U2 is equal
to one, it does then describe the multiplicity of the ir-
reducible representation which occurs upon restricting
to the subgroup SO3 × 1, which might be labelled by
S, P,D, F,G,H, ... For reasons of consistency we’ll re-
serve the term ‘multiplicity’ instead for the superscript
we’ll put on the whole term symbol, using latin num-
bering ‘bis, ter, quater, quinquies, ...’ which is the
multiplicity with which an irreducible representation of
the cartesian product group SO3×SU2 occurs within the
representation which we have called an ‘electron config-
uration.’

The numbers shown in the NIST database to the right of
the term symbols, when multiplied by the speed of light
in centimeters per second, become frequencies in cycles
per second. To a first approximation of course these fre-
quencies are proportional to sums of reciprocal squares.
In the next sections we’ll look at better approximations.
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Attempts to explain atomic spectra

The most significant departure of atomic spectra from
what would be if atoms were just obtained by coalescing
the nuclei of Hydrogen atoms (resulting in a set of fre-
quencies proportional to the differences of two sums of
k reciprocal squares) is a displacement of spectral lines
which is considered to be due to the electrostatic effect
of electron repulsion.

It is sometimes convenient to organize things in terms
of what are called ‘electron configurations.’ One takes
the direct sum of functions with kp fixed

V =
∞∑
l=0

∞∑
n=0

fkp,n,l(Hlα⊕Hlβ)

where Hl is the l + 1 dimensional vector space of real
homogeneous harmonic polynomials of degree l, and α, β
formal symbols, and considers the decomposition of the
real exterior algebra into the direct sum

⊕(
n∏
i=1

f eikp,li,ni)⊗
n
i=1 Λei(Hliα⊕Hliβ).

(Later we will see that a natural completion of this space
occurs as the global holomorphic forms on a complex
manifold.) The degree of an exterior power is used as a
superscript, and tensor products denoted by juxtaposi-
tion; so for example the tensor product

Λ2(f5,1,0(H0α⊕H0β))⊗Λ1(f5,2,0(H0α⊕H0β))⊗Λ2(f5,2,1(H1α⊕H1β))

which occurs as a 30-dimensional subspace of the wave
functions for Boron, is denoted 1s22s12p2.
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When the character is decomposed into irreducibles as
we’ve done before, and these are named according to
‘term symbols,’ we might include the electron configu-
ration notation alonside the term symbol, and such a
symbolic expression really does arise from each isotypi-
cal component of the space of Schroedinger wave func-
tions, so here the four isotypical parts of the electron
configuration, of dimension 12, 10, 2, 6, can be denoted

1s22s12p2 4P
1s22s12p2 2D

1s22s12p2 2S

1s22s12p2 2P

It is sometimes said that such notation is describing
meaningful physical ‘states,’ associated to isomorphism
types of representations of SO3 × SU2, but this would
not be quite exactly correct. The isotypical component
associated with an electron configuration and term sym-
bol is not always irreducible. This first occurs for the
excited Nitrogen electron configuration 1s22s22p23p1. Of
the eight term symbols, the term symbol 2D◦ occurs
with multiplicity two while 2P ◦ occurs with multiplicity
three; for instance we’ll later index the three isomorphic
but distinct representations corresponding to the term
symbol 2P ◦ by the names

1s22s22p23p1 2P ◦

1s22s22p23p1 2P ◦ bis

1s22s22p23p1 2P ◦ ter.
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The Aufbau is a more precise principle than I’ve so far
described. What one must do is to imagine the Auf-
bau as describing a filtration. We consider the number
of protons kp to be fixed, and imagine the atom at first
highly ionized, with all electrons pulled away. This gives
k = 0 and the space V0 consisting of just the zero func-
tion. Then one electron is allowed, k = 1, and we have
the space V1 which is the space of Schroedinger’s solu-
tions, but with β multiplied by kp. As k is increased, the
number k of electrons vary, and we write

Vk =
∞∑
l=0

N−l+δ∑
n=l+1

fk,n,l(Hlα⊕Hlβ).

Here α, β are a basis of the two dimensional representa-
tion with character e1(S). Recall that N and δ depend
on both k and l, as determined by the Aufbau; to re-
peat this definition, N is the number of Alkaline Earth
Metals including Hydrogen of atomic number less than
or equal to k while δ is zero if 2(l+ 1)2 does not exceed
the distance to the next Alkaline Earth Metal and 1 if
it does. This describes a filtration

0 = V0 ⊂ V1 ⊂ V2... ⊂ V

of the space V of Schroedinger solutions with kp protons,
and with no mutual electron repulsion, as k ranges.

The difference kp − k is sometimes called the ionization
number, and kp − k + 1 is usually denoted by a roman
numeral, so for instance when kp = 9 and k = 8 we are
talking about F II the first positively ionized Fluorine
atom.
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For each value of k now, the the exterior power has a
filtration with the associated graded space having the
direct sum decomposition

ΛkVk ∼= ⊕j1+...+jk=k ⊗ki=1 Λji(Vi/Vi−1).

Most of the terms have ji = 0 and for these Λji(Vi/Vi−1)
is just the real number field because most of the inclu-
sions Vi−1 ⊂ Vi are the identity.

Let s be the smallest so that Vs = Vk. The Aufbau in
the more precise version is the assertion that when the
associated graded space of ΛkVk is decomposed into ir-
reducible components, the only components which can
occur at the ground level are those in the summand
where we take all but the last ji as large as possible,
that is ji = dim(Vi/Vi−1) for i = 1, 2, ..., s − 1, while
then js = k − dim(Vs−1).

This implies that the ground state term symbols corre-
spond to the irreducible parts of an exterior power of
a single character e2l(L)es(S). It also implies that when
we consider the entire solution space corresponding to
a whole electron configuration, if we consider this as a
representation of (SO3×SU2)

v where v is the number of
orbitals, then when we decompose it for this group, the
irreducible components, which are just tensor products
of components of the separate irreducible representation
with character e2li(Li)esi(Si) for the i’th orbital, are in-
dexed by a sequence, assigning to each orbital a choice
of term symbol which is identical to the possibilities it
might have if it occurred as the unique ‘unfilled orbital’
in a ground state.
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That is, if we initially consider the representation space
associated to an electron configuration, for the action
of the whole large group which has a cartesian copy of
SO3 × SU2 for each orbital, the irreducible components
are indexed by a choice of term symbol for each or-
bital, and this is no different than the choices one would
make if one were confronted with a sequence of sepa-
rate atoms, each having the relevant orbital as the last
‘unfilled orbital.’

Later, when we talk a little about polarizations, we’ll
mention that a polarization for this cartesian product
group, with one cartesian factor of SO3 × SU2 for each
orbital, does determine within each irreducible represen-
tation – and so corresponding to each such sequence of
term symbols – a wave function which ‘has’ that polar-
ization, and it is unique up to a choice of complex scale
factor affecting both magnitude and phase. And also,
however, that it is not even approximately true that ev-
ery ‘energy level’ is attained by such a specialized wave
function, and it is necessary to accept that there is no
such meaningful picture as unlinked orbitals like this,
and it is necessary to pass to a smaller subgroup, the
diagonal copy of SO3 × SU2.
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Each irreducible part for the diagonal SO3 × SU2, in
turn, is not actually irreducible for the natural action
of the diagonal subgroup SU2 ⊂ SO3 × SU2. Later,
I will argue that this action of the diagonal subgroup
corresponds to rotations of space in the familiar way
we understand it (though since it consists of automor-
phisms of a line bundle rather than any actual ambient
complex two-dimensional vector space it must still be
an SU2 rather than an SO3 factor).2 Therefore, each
irreducible part splits further upon restriction to the di-
agonal and the number of parts should match the num-
ber of actual spectral levels coming from each electron
configuration and term symbol, in case the isotypical
component is irreducible, and each configuration with a
decorated term symbol in any case.

When for example a character like e2(S)e4(L), denoted
by 3D, is written upon setting S = L to one vari-
able J as the sum e6(J) + e4(J) + e2(J) the term sym-
bols corresponding to the three summands are denoted
3D5/2,

3D3/2,
3D1/2.

2This will involve understanding that the direct product SU2 × SU2 is isomorphic to the
semidirect product SU2 o SU2 via the conjugation action, with the rightmost factor being
the rotation action on the line bundle, and corresponding to the diagonal subgroup under
the isomorphism to SU2 × SU2.
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The identification of the term symbols can nearly be
treated as a matter of observation. For instance, in the
Russell-Saunders scheme here, once the set of frequen-
cies is resolved as differences from one set, each term like
3D corresponding to a representation e2(S)e4(L), has
the number of Russell Saunders lines emanating from it
being equal to the smaller of the subscripts s, l in each
symbol e2(S)e2l(L). The total dimension (s+ 1)(2l+ 1)
is the number of levels one would see under a magnetic
field, when the rotational symmetry is broken and the
space of wave functions decomposed as far as possible,
into one dimensional parts. From the minimum value
and the product, we know the unordered set {s, 2l}

Here is one example of a coupling scheme that is different
than the Russell-Saunders scheme. The NIST gives an
example of labelling a spectral line of Cobalt with the
symbol

3d7(4P )4s4p(3P ◦)D◦ 3[5/2]◦7/2.

In the language of characters, the part

3d7(4P )

describes extracting from the seventh exterior power of
the representation with character e1(S)e4(L) the com-
ponent with character e3(S)e2(L).

The part
4s4p(3P ◦)
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describes extracting from the tensor product whose char-
acter is e1(S)e1(S)e2(L) the component e2(S)e2(L) which
happens to be the one oflarger dimension. The symbol
D◦ refers to the result of tensoring the right factor of the
two extracted representations, and extracting from the
representation with character e2(L)e2(L) the summand
with character e4(L).

The unusual thing here is that instead of multiplying by
the two left factors e3(S) and e2(S), we replace S by L
in the first of these, and only tensor with that, getting
the character

e3(L)e4(L).

Note that when we tensor this with the remaining e2(S)
and set S and L to the same variable J we will obtain
just the character that we would have obtained in the
Russell Saunders case. However, at this juncture, the
symbol 3[5/2]7/2 refers to the operation of extracting the
component e5(L) from the product e3(L)e4(L) and mul-
tiplying with the needed e2(S) to obtain e2(S)e5(L).

The subscript 7/2 indicates that when the tensor prod-
uct is restricted to the diagonal subgroup, using the let-
ter J say for the basic character, we extract just the
representation with character e7(J).

Thus, the notation indexes one of the exact same rep-
resentations as in Russell Saunders notation is indexed
by a different symbol. The set of fine lines that is in-
dexed is the same in both schemes; what is different is
the groupings of fine lines into terms.
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In some, perhaps historical, ways of understanding things,
the actual spectral frequencies calculate to different val-
ues depending on what coupling scheme is used. How-
ever it is not difficult to describe a single theory that si-
multaneously generalizes all various the orbit-orbit cou-
pling schemes; that is, they are not really mutually in-
consistent.

The situation with what are called spin-orbit or spin-
spin or spin-other-orbit coupling schemes, there really
is a physical issue. There is a group action, if k is the
atomic number (minus degree of ionization), of the k-
fold cartesian product (SU2 × SU2)

k, and this contains
the group we mentioned before (with one diagonal copy
for each orbital); but it contains overall 2k − 1 different
diagonal copies of SU2, and so there are 2k − 1 possi-
ble Casimir operators one could use to split the space.
These do not all commute with each other; each choice of
a commuting set from among the 2k−1 operators gives a
different decomposition of the space of wave forms, and
each of these gives rise to a possibly different coupling
scheme.
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In the case of spin-orbit coupling, I will argue later that
the use of the main diagonal Casimir is implicit in a
correct understanding of the Laplacian operator and its
effect on residues on an exceptional divisor. Thus, to
explain the effect usually attributed to spin-orbit cou-
pling it is not necessary to include any extra term in
Schroedinger’s equation, and the equation extended to
several variables in the usual way by a product formula
suffices to explain the fine structure in spectra equally
well. Therefore the considerations in the previous para-
graph ought really refer only to ‘spin other-orbit’ cou-
pling; the ideal would be to understand again a way
that just a single partial differential equation already
explains the departure of spectra, most notably Helium,
from what one sees using only the first diagonal Lapla-
cian. I believe that understanding these further issues
amounts to finding a correct formulation of residues.

Now let’s talk a bit more about the Aufbau. The more
coarse filtration which related to finding the ground level
can be interpreted as a partial or, if one wishes, a total
ordering on the electron configurations.

If we ignore electron repulsion, so that the frequencies
are in proportion of differences of reciprocal squares,
then the situation is simple. Each time a new electron
is added to an ion, each level becomes an accumulation
point of infinitely many nearby levels, the set of accumu-
lation points then remaining always a discrete set below
an ionization level.

37



Thinking of how the Aufbau can reverse levels, then one
expects that once electron repulsion is included in the
Schroedinger equation, there would be no such meaning-
ful structure of the spectrum, again, apart from ques-
tions of intensity. But what is the explanation of the
Aufbau?

The Aufbau, if it were explained by the electrostatic
term, would need to be considered a consequence of the
combination of the fact that one considers subspaces
of wave functions, or exterior powers, or the Pauli Ex-
clusion, together with the electrostatic effect. The ex-
planation is that when you perturb the central charge
model to take account of electrostatic repulsion, as we
have done (or else change it to correctly take account of
electrostatic repulsion), then it is like shuffling together
two decks of cards. One with a combinatorial structure
coming from Pauli Exclusion, or from the notion one is
considering k dimensional spaces of wave functions (as
by Hartree-Fock). The second coming from the contin-
uous changes that are introduced to energy levels by
adding the continuous correction.

That because you compare a combinatorial structure
with a continuous structure, you get a changed com-
binatorial structure when the constraint is applied; so
that one should expect further and further complexity
in the periodic table if atomic numbers were increased
further.
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That, it isn’t a coincidence that it aligns with numbers of
electrons in ‘orbitals,’ because there are not that many
different orbitals overall, and each is considered together
for some reason.

And, when you look at the spectrum theoretically pro-
duced by just the Schroedinger equation and the electro-
static perturbation, it is indeed as if two decks of cards
have been shuffled together.

It may be have been tempting to try to explain this ge-
ometrically, as though the orbitals are the things people
draw, physical things. So it is like trying to pack oddly
shaped balloons into a box, when the vendor has chosen
the unique efficient packing. Any other way, and you
have to squeeze them in place.

But the drawings of orbitals that some chemistry books
make do not make sense. Lecture notes say say things
like, you don’t need to memorize all of these, but if you
want to do well on the exam you should memorize the
first five.
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Here we know that it is like a person in linear algebra,
mistakenly thinking that vector spaces have fixed bases,
because it is that literally. Someone, at some time, chose
a basis of the space of homogeneous harmonic polyno-
mials of each degree. Choosing a basis like that would
make sense if a vector space had two quadratic forms.
The correspondence between the two quadratic forms
will produce in the generic case a preferred basis; one is
seeing n points in projective space of dimension n − 1.
But, one does not describe two natural quadratic forms
on the space of homogeneous haromonic polynomials of
degree l for each l. It is usually assumed that the elec-
trostatic effect is the explanation. Let us consider this
question.

A bit later on, we’ll see that not only a choice of basis
causes difficulty, but that a more fundamental difficulty
should have been envisaged, that of using considerations
of symmetry when considering what essentially really
are only angles, versus considering harmonic functions
as global functions.

But for now the different question which we’ll look at
is to what extent the electrostatic effect can really be
the explanation of the Aufbau, and for this we can just
write down the calculated spectrum of a general atom.

Because it is an exercise in A level or high school integra-
tion, we’ll write down the integrals explicitly and write
down the first order perturbation, to give the ‘predicted’
energy levels.
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Before we start, in the way of simplifying things, it might
be helpful to mention that the highest weight calcula-
tion is not only an algorithm, there is a direct way to
pass from a character to its decomposition, which is de-
termined by the totality of the highest weight terms that
would have arisen from the algorithm.

These can always be written down directly. In the case
at hand, for SU2 × SU2, we consider the commutative
group homomorphism of projection on the positive weight
root space

γ : Z[S, S−1, L, L−1]→ Z[S, L].

This acts by the identity on any monomial SiLj with
i, j ≥ 0 and otherwise sends any monomial to zero. Now
if χ(S, L) is a character, then it is easy to prove that
merely multiplying χ(S, L) by the finite Laurent series

(1− S−2)(1− L−2)

and applying the projection γ gives as a result exactly
the sum of the highest weight terms in the component
characters in the irreducible decomposition of χ(S, L).
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If we want to know whether an irreducible character
ei(L)ej(S) of SU2 × SU2 occurs as a summand of the
representation with character χ(S, L), we can define the
positive integer bi,j to be zero if it does not occur, and
otherwise to be the multiplicity with which it occurs.
Then the totality of the multiplicities bi,j can be assem-
bled a polynomial

∑
i,j bi,jS

iLj. We find that the poly-
nomial is determined by the simple equation∑

bi,jS
iLj = γ(χ(S, L)(1− S−2)(1− L−2)) (6)

which does determine the natural number multiplicity
bi,j which counts the number times each summand ei(S)ej(L)
occurs in χ(S, L).

More generally, if a vector space endomorphism φ acts
on the representation as before, giving a more general
character χ(S, L, φ) and also if we work over the formal
power series ring in the fk,n,l the same formula holds, but
now bi,j is the formal power series in the fk,n,l giving the
trace of φ acting on the representation with character
ei(S)ej(L). If we write Schroedinger’s equation in the
form

(∆− β/r)Ψ = αΨ

then when we generalize to atomic number k thinking
of the fk,n,l for different electrons as being functions
of different radial variables, then the left side satisfies
a product rule, and the α value converts products to
sums. This is another way of seeing that the A values
for atomic number k with the central charge assumption
are sums of reciprocal squares.
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So the left side in this case can be written equivalently,
and more precisely

∆− kpβ(
1

r1
+ ...+

1

rk
).

with kp = k the number of protons. Recall that β is a
negative number. If we let

C =
∑
i<j

β

|pi − pj|

where pi denotes the i’th point in three space, then the
equation with the new term C times a parameter t

(∆− kpβ(
1

r1
+ ...+

1

rk
) + tC)Ψ = αΨ

generalizes to the case when electrostatic repulsion is
considered, if we set t = 1, but not if we set t = 0. And
we have solutions of the equation for t = 0.

Let me summarize the idea of perturbation theory, which
is nicely explained in [3] for example. This applies to
the Schroedinger equation if we bring to one side of the
equation all but the constant term. We consider a self-
adjoint alinear differential operator

φ : H → H

acting on a Hilbert space H, and a finite-dimensional
subspace V ⊂ H so that φ has a single eigenvalue λ on
V, that is φ(v) = λv for v ∈ V.
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Suppose now that over time t (or with respect to any
parameter t) , the operator φ varies in a known way,
giving at each time t an operator φt; and suppose that
we know abstractly that there is a space of solutions Vt
of the same dimension as V, and we assume that there
is a decomposition Vt = ⊕ri=1Vt,r where for each time t
Vt,i is an eigenspace of φt with an eigenvalue λi(t).

Thus λi(0) = λ for all i. One wishes to calculate the mys-
terious character χVt(φ) which is the trace of φt acting
on the unknown subspace Vt. One of course can calculate
the trace χV (π ◦ φt ◦ i)

V
i→ W

φt→ W
π→ V

where i and π are the Hilbert space inclusion and pro-
jection. The composite can be represented as a finite
matrix, and we can take the trace. The result of per-
turbation theory is that when φt is suitably analytic in
t that we may meaningfully write and manipulate the
relevant Taylor series,

Proposition. The Taylor

∞∑
i=0

ti

i!
(
d

dt

i

χVt(φt))|t=0

and ∞∑
i=0

ti

i!
(
d

dt

i

χV (π ◦ φt ◦ i))|t=0

agree in the first terms.
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For the proof, there is no harm assuming that the Vt,i
are one dimensional, and so up to multiplying by a func-
tion of t there is a unique way to choose a basis ele-
ment ei(t) ∈ Vt,i, and we assume that we can extend
e1(t), ..., en(t) to a basis e1(t), e2(t), ... of H consisting of
eigenfunctions for φ, so there are now functions λi such
that φ(t)ei(t) = λi(t)ei(t).

Then

0 = 〈((φ0 − λ(0)) +
1

1!

d

dt
(φt − λ(t))|t=0 +

1

2!

d

dt

2

(φt − λ(t))|t=0...)ei(t),

êi(0)〉
.

The first term in the left side, operating on anything at

all, sends it into the orthogonal subspace for êi(0) so the
leading terms (of lowest degree in t ) will be the degree
one term of the operator acting on the degree zero term
of ei(t). The fact that the whole expression is zero gives
that when t = 0

0 = 〈 d
dt

(φt − λi(t))ei(0), êi(0)〉

so
d

dt
λi(t) =

d

dt
〈φtei(0), êi(0)〉.

The left side summed from 1 to n gives the time deriva-
tive of the character of the moving representation Vt
while the right side is the time derivative of the trace of
the map of finite dimensional vector spaces V → W →
W → V.
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For each individual choice of i it is also true that the
series agree up to the first nonzero term, and likewise if
one is in a situation where one can invoke linear inde-
pendence of characters, the same is true for the series
in the proposition, being sums of linearly independent
parts.

When the proposition applies, unless magically differ-
ing eigenvalues later become the same again, the final
decomposition of Vt for a finite later time t will re-
spect a decomposition into parts of the same dimension
as the eigenspaces of the known linear transformation
π ◦ φ ◦ i : V → V.
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Just to be very clear about this, the assumption is not
that the perturbed operator preserves any particular
subspace. Rather, the assumption is that each rep-
resentation such as the non-irreducible representation
we calculated earlier for Nitrogen, which was a sum
of irreducible representations, moves and changes with
time, as a result of the change in the coefficients of the
Schroedinger equation; and that whereas at time zero
(when no electrostatic repulsion is considered) the ac-
tion of multiplication by the potential function preserves
the large decomposition and acts with a constant eigen-
value on such large parts as this, as time goes on it is
a different, modified, decomposition which is preserved.
That what had started out being the original irreducible
components move, and become different subspaces, but
that at each time the correct subspaces are preserved
by the correct operator. That then the subspaces which
had started out being the irreducible components each
may develop different eigenvalues.

And that the time derivative of the trace of the operator
φt at time zero operating in this way on a moving irre-
ducible component, is the same as the sum of the values
of

〈φtf, f〉
〈f, f〉

for f ranging over a non-moving basis of that irreducible
component.

This in turn is the trace of a diagonal operator, the one
which just acts on each basis element f by multiplication
by the number shown above.
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If we let χ(S, L) in (6) be the trace of that diagonal
operator, then the bi,j will be the time derivative at
time zero of the character of φt acting on the compo-
nent ei(S)ej(L) as it moves.

Combining ideas, if we let φ be the diagonal operator
multiplying each basic f by 〈Cf,f〉〈f,f〉 and build the charac-

ter using a0 + a1T + .. coming from (1), (2), (4), (5) then
taking for χ in (6) the coefficient ak from (5), means that
the bi,j on the right side of (6) will be such the first order
perturbation of the α eigenvalue for term es(S)e2l(L).

In the case at hand, we can let t range from 0 to 1 and
so when t = 1 the Schroedinger equation includes the
electrostatic component of the potential

∆Ψ = −(
2π

h
)2(2m)(

∑
i

kpβe
2

4n2
i

+E1(t)+
∑
i

kpe
2

ri
−t
∑
i<j

e2

ri,j
)Ψ.

(7)

The negative number
∑

i
kpβe

2

4n2i
is the energy when t = 0

and the term E1(t) corrects this. The last term on the
right when brought to the right side of the equation is
the perturbation of the operator; perturbation theory
calculates then d

dtE1(t), the rate of motion of the neg-
ative energy away from the ground state. The rate of
change of frequency in Hertz as a function of t is the
rate of change of the whole term times 1

h(4πε)2 .
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Multiplying by 1
h(4πε)2 to convert to MKS units and to

a frequency gives the corresponding sum of the rate of
change at t = 0 of the displacement of the spectral line
in cycles per second.

One thing that the proposition implies is that the value
of the first two nonzero terms does not depend on the
choice of Hilbert space structure which we might put
on the vector space of Schroedinger equation solutions,
except the choice of complement of the chosen subspace
(in practise the subspace associated to an electron con-
figuration). This is quite important as there was no rea-
son that the choice of Hilbert space structure which we
made was in any way natural or distinguished. It seems
certain that higher terms do depend on the choice of
Hilbert space structure, so in this sense the theory of
first-order perturbations does not naturally extend to a
higher order theory.

It is a fun exercise to do the calculation, it leads to a
closed expression for the spectrum of any atom in terms
of elementary functions (pi and natural logarithms). In
the case when the space of Schroedinger solutions is
multiplicity-free for the SU2 × SU2 action, that is, up
cases like the excited ‘configuration’ and term symbol
1s22s22p43p1 2D of Fluorine, which specifies an irre-
ducible representation of SU2×SU2 of multiplicity three,
or the configuration 1s22s22p23p1 of Nitrogen which has
a term of multiplicity three and one of multiplicity two,
we need only write down the character calculation which
we’ve already explained.
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In general, in cases like 1s22s22p23p1, we’ll explain a
further essentially number-theoretic calculation, which
comprises intersecting four sub-lattices in an integer lat-
tice and leads to a formula for the spectrum in the gen-
eral case.

A particular basis of the homogeneous harmonic poly-
nonmials of degree l in x, y, z (which also are mutually
orthogonal for the Hilbert space structure) are the

Pl,l+a(z, r)ha,ε(x, y)

for ε = 0, 1 a = 0, 1, 2, , ..., l with the proviso that ε must
be zero when a = l. Here the first factor is homogeneous
of degree l− a and the second of degree a, if we assume
r2 = x2 + y2 + z2. Specifically we take

ha,ε(x, y) =

[a−ε2 ]∑
i=0

(−1)i
(

a
2i+ ε

)
xa−2i−εy2i+ε

Pl,u(z, r) =

[l−u2 ]∑
i=0

(−1)i
(2l − 2i)!

(2l − 2i− u)!

(
l

i

)
z2l−2i−ur2i.

Then a basis of the 2l+1 dimensional space of solutions
of the Schroedinger equation for a single electron and
particular value of n and l (and with β replaced by kpβ)
are the products

fk,n,l(r)ha,ε(x, y)Pl,l+a(z, r),

for those values of a, ε. These happen to be mutually
orthogonal too.
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The harmonic function∑
i<j

1√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

has Taylor series for the i, j term, if ri ≥ rj given

∞∑
s=0

1

s!2s
rsj

rs+1
i

Ps,s(
xixj + yiyj + zizj

rirj
, 1).

This known series expansion is called the ‘multipole ex-
pansion.’ It may be possible to work with harmonic
functions in a nice conformal sense, here we are only
going to look at initial parts of Taylor series.

By choice of the ha,ε we have that for each a

ha,0(x, y) + iha,1(x, y) = (x+ iy)a.

For a basis of the complexification, we could also use

ha,0(x, y) + iha,1(x, y)

ha,0(x, y)− iha,1(x, y)

for a = 1, 2, ..., l and also the constant 1. The span of
each of these is preserved by the action of L if we choose
the torus in the obvious way, and therefore we can make
complex solutions of the single electron Schroedinger
equation with character L2m for m = −l,−l + 1, ..., l
as

fk,n,lPl,l+a(z, r)(ha,0 ± iha,1)
using the negative sign if m is negative, with the con-
vention that ha,1 = 0 if a = 0.
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The definite integrals3

Yk,a,b,n1,l1,n2,l2,n3,l3,n4,l4

= βa+b+2

∫ ∞
0

∫ r2

0

fk,n1,l1(r1)fk,n2,l2(r1)fk,n3,l3(r2)fk,n4,l4(r2)ra1r
b
2dr1dr2

and

Zs,l1,a1,ε1,l2,a2,ε2,l3,a3,ε3,l4,a4,ε4

=

∫
S2×S2

ha1,ε1(x1, y1)Pl1,l1+a1(z1, r1)ha2,ε2(x1, y1)Pl2,l2+a2(z1, r1)

ha3,ε3(x2, y2)Pl3,l3+a3(z2, r2)ha4,ε4(x2, y2)Pl4,l4+a4(zr, r2)

Ps,s(x1x2 + y1y2 + z1z2, r1r2)σ,

where σ is the standard area form on the two-sphere,
are easily determined. We will evaluate both integrals
in a minute.

Since we will want to consider the perturbation on the
exterior power, we need to choose a Hilbert space struc-
ture on the exterior algebra.

If αi and βi are elements of the (as yet undefined) repre-
sentation whose character is e1(S), and fi, gi wave forms
or wave functions, we will write

〈f1α1 ∧ ... ∧ fkαk, g1β1 ∧ ... ∧ gkβk〉
= determinant(〈fiαi, gjβj〉)

3 The coefficient βa+b+2 makes the value independent of β, it amounts to an inessential
change of basis. It is inessential because although removing the coefficient changes the
integral, it does not change the overall calculation.
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and we take

〈fiαi, gjβj〉 = 〈fi, gj〉〈αiβj〉.

Let’s take as the Hilbert space structure on our space
with character e1(S), with basis say α, β, just the Eu-
clidean product 〈α, β〉 = 〈β, α〉 = 0, 〈α, α〉 = 〈β, β〉 = 1.
And for the functions we’ll take

〈f, g〉 =

∫
fgω

for ω a volume form on three space. In order to apply
Perturbation theory we need any reasonable extension
of the Hilbert space structure to a space including multi-
ples of our wave forms by L2 functions; it is not difficult
to do this.

Our inner product

〈f1α1 ∧ ... ∧ fkαk, g1β1 ∧ ... ∧ gkβk〉

=
∑
σ

(−1)sgn σ〈α1, βσ(1)〉...〈αkβσ(k)〉〈f1, gσ(1)〉...〈fk, gσ(k)〉

is of course also equal to∑
σ

(−1)sgn σ〈α1, βσ(1)〉...〈αkβσ(k)〉
∫
f1gσ(1)ω...

∫
fkgσ(k)ω

and we can rewrite∫
f1gσ(1)ω...

∫
fkgσ(k)ω =

∫
f1(p1)gσ(1)(p1)...fk(pk)gσ(k)(pk)ωk

for (p1, ..., pk) in 3k space and ωk the volume form in 3k
space. This is equal to∫

f1(p1)g1(pσ−1(1))...fk(pk)gk(pσ−1(k))ωk
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and also to∫
f1(pσ(1))g1(p1)...fk(pσ(k))gk(pk).

Thus if ψ and φ are any two functions of (p1, ..., pk) we
may write

〈ψα1 ∧ ... ∧ αk, φβ1 ∧ ... ∧ βk〉

=
∑
σ

(−1)sgn(σ)〈α1, βσ(1)〉...〈αk, βσ(k)〉
∫
ψ(pσ(1), ..., pσ(k))φ(p1, ..., pk)ωk.

A particular basis of the k’th exterior power of the space
of Schroedinger solutions is the wedge products of the

fk,n,l(r)Pl,a(z, r)(ha,0 + iha,1)(x, y)σs

We’ve reverted to using complex numbers, but not in an
essential way. We will write, for a > 0

h−a,0 + ih−a,1 = ha,0 − iha,1

There is no reason for this choice except if we write

ha,0 + iha,1 = (x+ iy)a

then when x2 + y2 = 1 we really are talking about the
reciprocal. These functions are indexed by l, n, a, σ sat-
isfying

0 ≤ l ≤ n− 1

−l ≤ a ≤ l

0 ≤ σ ≤ 1.

Here σ0, σ1 are the basis of the as yet undefined repre-
sentation we are using, whose character is e1(S)
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(In other notation the number a is sometimes instead
denoted ml and is sometimes called the ‘magnetic quan-
tum number,’ and the number s is sometimes given val-
ues 1/2 and −1/2 and would be called ‘spin.’)

If we begin with a vector space spanned by a set of
these basis vectors, the matrix of V → W → W → V
where W → W is multiplying by electrostatic potential,
is given so that for two such basis vectors (the second
indexed by primed subscripts) the matrix entry is for
instance if li = l′i, ai = a′i, ni = n′i, and σi = σ′i and all ai
are positive then
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Xl1,...,lk;a1,...ak;n1,...,nk;σ1,...,σk;l′1,...,l
′
k;a′1,...,a

′
k;n′1,...,n

′
k;σ′1,...,σ

′
k

=
∑
i<j

∫
fk,ni,li(r1)Pli,li+ai(z1, r1)(hai,0 ± ihai,1)(x1, y1)

fk,nj ,lj(r2)Plj ,lj+aj(z2, r2)(haj ,0 ± ihaj ,1)(x2, y2)∑
i<j

∞∑
s=0

rs≤
rs+1
≥

1

s!2s
Ps,s(

x1x2 + y1y2 + z1z2

r1r2
, 1)

fk,n′i,l′i(r1)Pl′i,l′i+a′i(z1, r1)(hai,0 ∓ iha′i,1)(x1, y1)

fk,n′j ,l′j(r2)Pl′j ,l′j+a′j(z2, r2)(haj ,0 ∓ ihaj ,1)(x2, y2)

− fk,ni,li(r1)Pl1,li+ai(z1, r1)(hai,0 ± ihai,1)(x1, y1)

fk,nj ,lj(r2)Plj ,lj+aj(z2, r2)(haj ,0 ± ihaj ,1)(x2, y2)
∞∑
s=0

rs≤
rs+1
≥

1

s!2s
Ps,s(

x1x2 + y1y2 + z1z2

r1r2
, 1)

fk,n′i,l′i(r2)Pl′i,li+a′i(z2, r2)(hai,0 ∓ iha′i,1)(x2, y2)

fk,n′j ,l′j(r1)Pl′j ,l′j+a′j(z1, r1)(ha′j ,0 ∓ iha′j ,1)(x1, y1)

dx1dy1dz1dx2dy2dz2/D

with D chosen to correct that our basis elements aren’t
norm one.

This is an easy calculation which can be done by hand in
terms of the definite integrals which we described above,
and will calculate a little later in terms of π and the
natural log function only.

When some ai are negative we need to muliply by signs
sgn(ai).
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The actual perturbation matrix differs slighty from this
in matters of sign when ai can be negative and we don’t
assume that the two sets of subscripts are equal. Un-
like the character calculation, the actual perturbation
matrix is unwieldy for hand calculation, but not too un-
weildy for a simple javascript. It is
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Xl1,...,lk;a1,...ak;n1,...,nk;σ1,...,σk;l′1,...,l
′
k;a

′
1,...,a

′
k;n

′
1,...,n

′
k;σ

′
1,...,σ

′
k

=
∑
i<j

∑
i2<j2

(−1)i−i2+j−j2

δ
l1,...,l̂i,...,l̂j ,...,lk;a1,...,âi,...,âj ,....,ak;n1,...,n̂i,...,n̂j ,...,nk;σ1,...,σ̂i,...,σ̂j ,...,σk;l′1,...,l̂

′
i2
,...,l̂′j2

,...,l′k;a
′
1,...,â

′
i2
,...,â′j2

,...,a′k;n
′
1,...,n̂

′
i2
,...,n̂′

j2
,...,n′

k;σ
′
1,...,σ̂

′
i2
,...,σ̂′

j2
,...,σ′

k

∞∑
s=0

(δσiσi′ δσjσj′

s!2s
(Y (k, li + l′i2 + s+ 2, lj + l′j2 − s+ 1, ni, li, n

′
i2 , l
′
i2 , nj , lj , n

′
j2 , l
′
j2)

+ Y (k, lj + l′j2 + s+ 2, li + l′i2 − s+ 1, nj , lj , n
′
j2 , l
′
j2 , ni, li, n

′
i2 , l
′
i2))

(Z(s, li, ai, 0, l
′
i2 , a

′
i2 , 0, lj , aj , 0, l

′
j2 , a

′
j2 , 0)− Z(s, li, ai, 0, l

′
i2 , a

′
i2 , 1, lj , aj , 0, l

′
j2 , a

′
j2 , 1)sgn(a′i2)sgn(a′j2)

+ Z(s, li, ai, 0, l
′
i2 , a

′
i2 , 0, lj , aj , 1, l

′
j2 , a

′
j2 , 1)sgn(aj)sgn(a′j2) + Z(s, li, ai, 0, l

′
i2 , a

′
i2 , 1, lj , aj , 1, l

′
j2 , a

′
j2 , 0)sgn(aj)sgn(a′i2)

+ Z(s, li, ai, 1, l
′
i2 , a

′
i2 , 0, lj , aj , 0, l

′
j2 , a

′
j2 , 1)sgn(ai)sgn(a′j2) + Z(s, li, ai, 1, l

′
i2 , a

′
i2 , 1, lj , aj , 0, l

′
j2 , a

′
j2 , 0)sgn(ai)sgn(a′i2)

− Z(s, li, ai, 1, l
′
i2 , a

′
i2 , 0, lj , aj , 1, l

′
j2 , a

′
j2 , 0)sgn(ai)sgn(aj) + Z(s, li, ai, 1, l

′
i2 , a

′
i2 , 1, lj , aj , 1, l

′
j2 , a

′
j2 , 1)sgn(ai)sgn(aj)sgn(a′i2)sgn(a′j2)

−
δσiσj′ δσjσi′

s!2s
(Y (k, li + l′j2 + s+ 2, lj + l′i2 − s+ 1, ni, li, n

′
j2 , l
′
j2 , nj , lj , n

′
i2 , l
′
i2)

+ Y (k, lj + l′i2 + s+ 2, li + l′j2 − s+ 1, nj , lj , n
′
i2 , l
′
i2 , ni, li, n

′
j2 , l
′
j2))

(Z(s, li, ai, 0, l
′
j2 , a

′
j2 , 0, lj , aj , 0, l

′
i2 , a

′
i2 , 0)

− Z(s, li, ai, 0, l
′
j2 , a

′
j2 , 1, lj , aj , 0, l

′
i2 , a

′
i2 , 1)sgn(a′i2)sgn(a′j2) + Z(s, li, ai, 0, l

′
j2 , a

′
j2 , 1, lj , aj , 1, l

′
i2 , a

′
i2 , 0)sgn(aj)sgn(a′j2)

+ Z(s, li, ai, 0, l
′
j2 , a

′
j2 , 0, lj , aj , 1, l

′
i2 , a

′
i2 , 1)sgn(aj)sgn(a′i2) + Z(s, li, ai, 1, l

′
j2 , a

′
j2 , 1, lj , aj , 0, l

′
i2 , a

′
i2 , 0)sgn(ai)sgn(a′j2)

+ Z(s, li, ai, 1, l
′
j2 , a

′
j2 , 0, lj , aj , 0, l

′
i2 , a

′
i2 , 1)sgn(ai)sgn(a′i2)− Z(s, li, ai, 1, l

′
j2 , a

′
j2 , 0, lj , aj , 1, l

′
i2 , a

′
i2 , 0)sgn(ai)sgn(aj)

+ Z(s, li, ai, 1, l
′
j2 , a

′
j2 , 1, lj , aj , 1, l

′
i2 , a

′
i2 , 1)sgn(ai)sgn(aj)sgn(a′i2)sgn(a′j2)))

/
√
(((Y (k, li + li + 2, lj + lj + 2, ni, li, ni, li, nj , lj , nj , lj)

+ Y (k, lj + lj + 2, li + li + 2, nj , lj , nj , lj , ni, li, ni, li))

(Z(0, li, ai, 0, li, ai, 0, lj , aj , 0, lj , aj , 0)− Z(0, li, ai, 0, li, ai, 1, lj , aj , 0, lj , aj , 1)sgn(ai)sgn(aj)

+ Z(0, li, ai, 0, li, ai, 0, lj , aj , 1, lj , aj , 1)sgn(aj)sgn(aj) + Z(0, li, ai, 0, li, ai, 1, lj , aj , 1, lj , aj , 0)sgn(aj)sgn(ai)

+ Z(0, li, ai, 1, li, ai, 0, lj , aj , 0, lj , aj , 1)sgn(ai)sgn(aj) + Z(0, li, ai, 1, li, ai, 1, lj , aj , 0, lj , aj , 0)sgn(ai)sgn(ai)

− Z(0, li, ai, 1, li, ai, 0, lj , aj , 1, lj , aj , 0)sgn(ai)sgn(aj) + Z(0, li, ai, 1, li, ai, 1, lj , aj , 1, lj , aj , 1)sgn(ai)sgn(aj)sgn(ai)sgn(aj))

(Y (k, l′i2 + l′i2 + 2, l′j2 + l′j2 + 2, n′i2 , l
′
i2 , n

′
i2 , l
′
i2 , n

′
j2 , l
′
j2 , n

′
j2 , l
′
j2)

+ Y (k, l′j2 + l′j2 + 2, l′i2 + l′i2 + 2, n′j2 , l
′
j2 , n

′
j2 , l
′
j2 , n

′
i2 , l
′
i2 , n

′
i2 , l
′
i2))

(Z(0, l′i2 , a
′
i2 , 0, l

′
i2 , a

′
i2 , 0, l

′
j2 , a

′
j2 , 0, l

′
j2 , a

′
j2 , 0)− Z(0, l′i2 , a

′
i2 , 0, l

′
i2 , a

′
i2 , 1, l

′
j2 , a

′
j2 , 0, l

′
j2 , a

′
j2 , 1)sgn(a′i2)sgn(a′j2)

+ Z(0, l′i2 , a
′
i2 , 0, l

′
i2 , a

′
i2 , 0, l

′
j2 , a

′
j2 , 1, l

′
j2 , a

′
j2 , 1)sgn(a′j2)sgn(a′j2) + Z(0, l′i2 , a

′
i2 , 0, l

′
i2 , a

′
i2 , 1, l

′
j2 , a

′
j2 , 1, l

′
j2 , a

′
j2 , 0)sgn(a′j2)sgn(a′i2)

+ Z(0, l′i2 , a
′
i2 , 1, l

′
i2 , a

′
i2 , 0, l

′
j2 , a

′
j2 , 0, l

′
j2 , a

′
j2 , 1)sgn(a′i2)sgn(a′j2) + Z(0, l′i2 , a

′
i2 , 1, l

′
i2 , a

′
i2 , 1, l

′
j2 , a

′
j2 , 0, l

′
j2 , a

′
j2 , 0)sgn(a′i2)sgn(a′i2)

− Z(0, l′i2 , a
′
i2 , 1, l

′
i2 , a

′
i2 , 0, l

′
j2 , a

′
j2 , 1, l

′
j2 , a

′
j2 , 0)sgn(a′i2)sgn(a′j2) + Z(0, l′i2 , a

′
i2 , 1, l

′
i2 , a

′
i2 , 1, l

′
j2 , a

′
j2 , 1, l

′
j2 , a

′
j2 , 1)sgn(a′i2)sgn(a′j2)sgn(a′i2)sgn(a′j2))).)
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Here a hat symbol ̂ indicates that a particular sub-
script does not actually occur. The number

δ
l1,...,l̂i,...,l̂j ,...,lk;a1,...,âi,...,âj ,....,ak;n1,...,n̂i,...,n̂j ,...,nk;σ1,...,σ̂i,...,σ̂j ,...,σk;l′1,...,l̂

′
i2
,...,l̂′j2

,...,l′k;a
′
1,...,â

′
i2
,...,â′j2

,...,a′k;n
′
1,...,n̂

′
i2
,...,n̂′

j2
,...,n′

k;σ
′
1,...,σ̂

′
i2
,...,σ̂′

j2
,...,σ′

k

is just defined to be 0 unles the first set of subscripts
equals the second, and otherwise 1. This δ arises when
we evaluate a k − 2-fold iterated integral of products
of just two functions obtaining the product of of k − 2
simpler delta functions just expressing orthogonality of
the basic functions which we chose.

The denominator can be simplified by removing four
pairs of cancelling terms. Since we will just use a simple
javascript to evaluate the sum, the extra work will not
be difficult and we’ll leave the eight cancelling terms in
place. Each matrix entry is thus a sum of integrals which
we will directly evaluate in terms of natural logs and
π, working as if it were a high-school calculus problem.
The sum in s (the multipole expansion) only needs to be
taken up to s = 4 (what is called the quadropole term)
for good accuracy.
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Since the electrostatic repulsion term in the potential
is invariant under SU2 × SU2 the eigenspaces of this
matrix will necessarily be representations of SU2×SU2,
and in every generic case will of course be irreducible
representations. If the Casimir operators of SU2×1 and
1× SU2 in the action on the exterior power are written
in the relevant basis (not a basis with respect to which
one would ordinarily consider the Casimir operator, but,
rather involving a change of basis using the coefficient of
the Legendre polynomials as a matrix), then the matrix
above will commute with both Casimir operators.

For low atomic number, the first case we’re considering,
where the action of SU2 × SU2 on the exterior power is
multiplicity-free, one then has a three-way bijection, be-
tween eigenspaces for this matrix, versus a set of isomor-
phism types of irreducible representations of SU2×SU2

(which also correspond to characters), versus what one
might call Russell-Saunders configurations of spectral
lines, consisting of a term symbol representing a spec-
tral line which, viewed more carefully is seen to consist
of Russell-Saunders lines, and each of these which can be
further resolved into finer lines by either observing the
spectrum in the presence of a magnetic field or perhaps
better resolving one spectral line coming from a glass
prism by a magnetic prism to generate Stern-Gerlach
lines.
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For example the term symbol 3D corresponding to e2(S)e4(L)
has three Russell-Saunders lines (three being the min-
imum of 2 + 1 and 4 + 1) and the dimensions of the
corresponding representations are 7, 5, 3 corresponding
to one of the Russell-Saunders lines splitting into seven
parts, one into five parts, one into three parts under
magnetism.

Let’s now calculate the actual values of the various Z
and Y definite integrals, As I just mentioned, these can
easily be calculated in terms of π, the natural loga-
rithm function, and rational numbers. The integral of a
monomial x2ay2bz2c in (x, y, z) space over the unit two
sphere for a, b, c natural numbers (note that a mono-
mial with any odd exponent integrates to zero). For
r2 = x2 + y2 + z2,∫

x2ay2bz2c

r2a+2b+2c
dxdydz ·

∫ ∞
0

e−r
2

r2a+2b+2cr2dr

=

∫
e−x

2

x2ae−y
2

y2be−z
2

z2bdxdydz

= Γ(a+
1

2
)Γ(b+

1

2
)Γ(c+

1

2
),

while the second factor is∫ ∞
0

e−r
2

ra+b+c+2r

2

dr

r2

=
1

2
Γ(a+ b+ c+

3

2
).

Thus the integral of the monomial over the unit sphere
is

2
Γ(a+ 1

2)Γ(b+ 1
2)Γ(c+ 1

2)

Γ(a+ b+ c+ 3
2)

.
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=
4π

2a+ 2b+ 2c+ 1

(
a+ b+ c
a, b, c

)
(

2a+ 2b+ 2c
2a, 2b, 2c

)
where the second factor is the ratio of trinomial coeffi-
cients.
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Let’s then calculate the second integral, taking account
of the fact that we can set r1 = r2 = 1. It evaluates to
a rational multiple of π, given

Zs,l1,a1,ε1,l2,a2,ε2,l3,a3,ε3,l4,a4,ε4

=

∫
S2×S2

[
a1−ε1

2 ]∑
i1=0

[
a2−ε2

2 ]∑
i2=0

[
a3−ε3

2 ]∑
i3=0

[
a4−ε4

2 ]∑
i4=0

[
l1−a1

2 ]∑
j1=0

[
l2−a2

2 ]∑
j2=0

[
l3−a3

2 ]∑
j3=0

[
l4−a4

2 ]∑
j4=0

[s− s2 ]∑
w=0

(−1)i1+i2+i3+i4+j1+j2+j3+j4+w

(
a1

2i1 + ε1

)(
a2

2i2 + ε2

)(
a3

2i3 + ε3

)(
a4

2i4 + ε4

)
(2l1 − 2j1)!

(l1 − 2j1 − a1)!

(2l2 − 2j2)!

(l2 − 2j2 − a2)!

(2l3 − 2j3)!

(l3 − 2j3 − a3)!

(2l4 − 2j4)!

(l4 − 2j4 − a4)!

(2s− 2w)!

(2s− 2w − s)!

(
l1
j1

)(
l2
j2

)(
l3
j3

)(
l4
j4

)(
s

w

)
xa1−2i1−ε1+a2−2i2−ε2

1 y2i1+ε1+2i2+ε2
1 zl1−2j1−a1+l2−2j2−a2

1

xa3−2i3−ε3+a4−2i4−ε4
2 y2i3+ε3+2i4+ε4

2 zl3−2j3−a3+l4−2j4−a4
2

(x1x2 + y1y2 + z1z2)
(s−2w)σ
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=

[
a1−ε1

2 ]∑
i1=0

[
a2−ε2

2 ]∑
i2=0

[
a3−ε3

2 ]∑
i3=0

[
a4−ε4

2 ]∑
i4=0

[
l1−a1

2 ]∑
j1=0

[
l2−a2

2 ]∑
j2=0

[
l3−a3

2 ]∑
j3=0

[l4−a4
2 ]∑

j4=0

[s− s2 ]∑
w=0

(−1)i1+i2+i3+i4+j1+j2+j3+j4+w

(
a1

2i1

)(
a2

2i2

)(
a3

2i3

)(
a4

2i4

)
(2l1 − 2j1)!

(l1 − 2j1 − a1)!

(2l2 − 2j2)!

(l2 − 2j2 − a2)!

(2l3 − 2j3)!

(l3 − 2j3 − a3)!

(2l4 − 2j4)!

(l4 − 2j4 − a4)!

(2s− 2w)!

(2s− 2w − s)!(
l1
j1

)(
l2
j2

)(
l3
j3

)(
l4
j4

)
s−2w∑
q=0

s−2w−q∑
v=0

(s− 2w)!

q!v!(s− 2w − q − v)!

1

2
(1 + (−1)a1+ε1+a2+ε2+q)

1

2
(1 + (−1)ε1+ε2+v)

1

2
(1 + (−1)a1+a2+l1+l2+s−2w−q−v)

1

2
(1 + (−1)a3+ε3+a4+ε4+q)

1

2
(1 + (−1)ε3+ε4+v)

1

2
(1 + (−1)a3+a4+l3+l4+s−2w−q−v)

2
Γ
(
a1−2i1−ε1+a2−2i2−ε2+q+1

2

)
Γ
(

2i1+ε1+2i2+ε2+v+1
2

)
Γ
(
l1−2j1−a1+l2−2j2−a2+(s−2w−q−v)+1

2

)
Γ
((

a1−2i1−ε1+a2−2i2−ε2+q+1
2

)
+
(

2i1+ε1+2i2+ε2+v+1
2

)
+
(
l1−2j1−a1+l2−2j2−a2+(s−2w−q−v)+1

2

))
2

Γ
(
a3−2i3−ε3+a4−2i3−ε3+q+1

2

)
Γ
(

2i3+ε3+2i4+ε4+v+1
2

)
Γ
(
l3−2j3−a3+l4−2j4−a4+(s−2w−q−v)+1

2

)
Γ
((

a3−2i3−ε3+a4−2i3−ε3+q+1
2

)
+
(

2i3+ε3+2i4+ε4+v+1
2

)
+
(
l3−2j3−a3+l4−2j4−a4+(s−2w−q−v)+1

2

))
(9)

and one may substitute then the given values of the
gamma function as ratios of trinomial coefficients.
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For the first integral,

Yk,a,b,n1,l1,n2,l2,n3,l3,n4,l4

= βa+b+2
n1−l1−1∑
i1=0

n2−l2−1∑
i2=0

n3−l3−1∑
i3=0

n4−l4−1∑
i4=0(

n1 + l1
n1 − l1 − 1− i1

)(
n2 + l2

n2 − l2 − 1− i2

)(
n3 + l3

n3 − l3 − 1− i3

)(
n4 + l4

n4 − 44 − 1− i4

)
( k
n1
β)i1

i1!

( k
n2
β)i2

i2!

( k
n3
β)i3

i3!

( k
n4
β)i4

i4!∫ ∞
0

∫ r2

0

ekβ(r1( 1
2n1

+ 1
2n2

)+r2( 1
2n3

+ 1
2n4

))ra+i1+i2
1 rb+i3+i4

2 dr1dr2

=

n1−l1−1∑
i1=0

n2−l2−1∑
i2=0

n3−l3−1∑
i3=0

n4−l4−1∑
i4=0(

n1 + l1
n1 − l1 − 1− i1

)(
n2 + l2

n2 − l2 − 1− i2

)(
n3 + l3

n3 − l3 − 1− i3

)(
n4 + l4

n4 − 44 − 1− i4

)
(knβ)i1

i1!

(knβ)i2

i2!

(knβ)i3

i3!

(knβ)i4

i4!∫ ∞
0

ekβr2( 1
2n3

+ 1
2n4

)ri3+i4+b
2

∫ r2

0

ekβr1( 1
2n1

+ 1
2n2

)ri1+i2+a
1 dr1dr2

We will only be evaluating the original integral when
a ≥ 0 and a + b ≥ 1. Now there are two cases. If
i3 + i4 + b ≥ 0 we can simply write
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∫ ∞
0

ekβr2( 1
2n3

+ 1
2n4

)ri3+i4+b
2

∫ r2

0

ekβr1( 1
2n1

+ 1
2n2

)ri1+i2+a
1 dr1dr2

=

∫ ∞
0

ekβr2( 1
2n1

+ 1
2n2

+ 1
2n3

+ 1
2n4

)ri3+i4+b
2

i1+i2+a∑
j=0

(−1)j
ri1+i2+a−j

2

(kβ( 1
2n1

+ 1
2n2

))j+1

(i1 + i2 + a)!

(i1 + i2 + a− j)!

+
(−1)i1+i2+a+1(i1 + i2 + a)!

(kβ( 1
2n1

+ 1
2n2

))i1+i2+a+1
ekβr2( 1

2n3
+ 1

2n4
)dr2

=

i1+i2+a∑
j=0

(−1)j
1

(kβ( 1
2n1

+ 1
2n2

))j+1

(i1 + i2 + a)!

(i1 + i2 + a− j)!

(−1)i1+i2+i3+i4+a+b−j+1 (i1 + i2 + i3 + i4 + a+ b− j)!
(kβ( 1

2n1
+ 1

2n2
+ 1

2n3
+ 1

2n4
))i1+i2+i3+i4+a+b−j+1

+
(−1)i1+i2+a+1+i3+i4+b+1

(kβ( 1
2n1

+ 1
2n2

))i1+i2+a+1

(i3 + i4 + b)!

kβ( 1
2n3

+ 1
2n4

)i3+i4+b+1
(i1 + i2 + a)!)

=

i1+i2+a∑
j=0

(−1)i1+i2+i3+i4+a+b+1 1

(kβ( 1
2n1

+ 1
2n2

))j+1

(i1 + i2 + a)!

(i1 + i2 + a− j)!

(i1 + i2 + i3 + i4 + a+ b− j)!
(kβ( 1

2n1
+ 1

2n2
+ 1

2n3
+ 1

2n4
))i1+i2+i3+i4+a+b−j+1

+
(−1)i1+i2+a+1+i3+i4+b+1

(kβ( 1
2n1

+ 1
2n2

))i1+i2+a+1

(i3 + i4 + b)!

(kβ( 1
2n3

+ 1
2n4

))i3+i4+b+1
(i1 + i2 + a)!

(10)
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If on the other hand i1 + i2 + b < 0 we can use the
integral equation which I found in the integral tables on
the NIST website [5]∫ ∞

0

xe−qxE1(wx)dx =
1

q2
[ln(1 +

q

w
)− q

q + w
]. (11)

Setting q = kβ( 1
2n3

+ 1
2n4

) and w = kβ( 1
2n1

+ 1
2n2

) this
gives the desired integral for the case a = 1, b = −1. We
always have a+ b ≥ 2 to begin with, and so integration
by parts can certainly always reduce to the calculation
of this one integral.

That is, if we write

I1(q,m) =

∫ ∞
0

e−qxxmdx

I2(q, w, a, b) =

∫ ∞
0

∫ ∞
x

e−qx−wy
xa

yb
(12)

we can write an expression for I1(q,m) by recursively
using the rules

I1(q, 0) = 1/q

I1(q,m) =
m

q
I1(q,m− 1)

and for I2 the recursive rules that for b ≥ 2

I2(q, w, a, b) =
−1

1− b
I1(q+w, a+1−b)+ w

1− b
I2(q, w, b−1),

if b = 1 and a ≥ 1

I2(q, w, a, b) =
a

q
I2(q, w, a− 1, b)− 1

q
I1(w + q, a− b)

and finally if a = b = 1 I2(q, w, a, b) is given by the right
side of (11).
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Now that we’ve calculated each individual eigenvalue,
the perturbation character is below (where the subscripts
on X are not repeated, but they only refer to the diago-
nal matrix entries, we have not yet used the full matrix).

∞∑
φ=0

∞∑
ψ=0

∞∑
w=0

∑
a1 + ...+ aw = k
a1 < a2 < ... < ak

∞∑
l1=da1−12 e

...
∞∑

lw=da1−12 e

∑
i1+j1=a1

...
∑

iw+jw=aw∑
l1+1≤n1,1<...<n1,i1<∞

...
∑

lw+1≤nw,1<...<nw,iw<∞∑
−l1≤m1,1≤...≤m1,i1

≤l1

∑
−l1≤m′1,1≤...≤m′1,j1≤l1

...
∑

−lw≤mw,1≤...≤mw,iw≤lw

∑
−lw≤m′w,1≤...≤m′w,jw≤lw∑

i1+...+iw−(j1+...+jw)=φ

∑
∑
mα,β+

∑
nαβ=ψ

Qkp,l1,m1,1,n1,1,l1,m1,2,n1,2,...l1,m1,i1
,n1,i1 ,

l1,m′1,1,n1,1,...,l1,m
′
1,j1

,n1,j1 ,l2,m2,1,n2,1,l2,m2,2,n2,2,...,l2,m2,i2
,n2,i2 ,l2,m

′
2,1,n2,1,l2,m

′
2,2,n2,2,...,l2,m

′
2,j2

,n2,j2 ,

...,lw,m′w,jw ,nw,jw ,δ
SφL2ψ.

where the symbol Q here denotes just the diagonal el-
ement of the matrix X which we calculated, in which
a spin number of 1 is inserted after each primed occur-
rence of m and 0 after each unprimed (and the index
sequence repeated to get a diagonal entry).
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Multiplying by (1−S−2)(1−L−2) and projecting to the
positive weight space converts the time derivative of the
trace of the operator on the moving eigensapces into
just the sum of the eigenvalues on highest weight mono-
mials. If the first order perturbation were completely
accurate, the trace on each highest weight line would be
the perturbation of the eigenvalue which applies to the
whole corresponding representation. The coefficients in
this character are specific numbers, calculated by (1)
through (12) above.

This finishes an explicit closed formula for the spectrum
of every atom up to the first case when wave forms for
that atom develop multiplicities, in terms of natural log-
arithms, rational numbers, and the number π, assuming
that the quadropole expansion and first order perturba-
tion are accurate.

In cases when the representation is multiplicity free, it
describes the energy levels of Schroedinger’s equation
including the first order electrostatic perturbation.

It is a hand calculation to solve the integrals and term
symbols above.

Let’s go through the character calculation for an ex-
cited configuration of Carbon, the first one with many
term symbols, that is 1s22s22p13p1. Substituting all the
previous equations into the equation above expcicitly
gives the perturbation character in units of THz. It
has positive part 158464 + 105487 L2 + 528020 L4 +
790714 S2 + 527184 L2S2 + 263039 L4S2. Multiplying
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by (1−L−2)(1−S−2) as though we were finding highest
weights of a character (although we are not) gives

266234+262712 L2+264980 L4+263530S2+264144L2S2+263040L4S2.

The actual character of the space of wave functions with
respect to SU2×SU2 is by the earlier type of calculation

6 + 4L2 + 2L4 + 3S2 + 2L2S2 + L4S2.

Now here multiplying by (1 − L−2)(1 − S−2) and tak-
ing the positive part gives the sum of highest weight
monomials

1 + L2 + L4 + S2 + L2S2 + L4S2,

and the frequency displacements are taken to be the
the terms of the second expression which occur in the
six positions indicated by the fourth expression (in this
case all of them).

The term symbols produced by the character calculation
are in the order agreeing with the NIST database
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The six numbers in units of cm−1 just result by dividing
each of the six coefficients in the character formula by
the speed of light in centimeters per second.

The right one-third of the image is a photocopy of data
from the NIST database. On the left I have added a
reference constant to all the values to make the first
values coincide.

The calculation for the trace of just the identity map
for the vector space associated to the same the ‘elec-
tron configuration’ 1s22s22p13p1 shows that it is actually
multiplicity-free. When we multiplied the character of
the representation 6+4L2 +2L4 +3S2 +2L2S2 +L4S2 by
(1− L2)(1− S2) and deleted all but the positive degree
terms, the result 1 + L2 + L4 + S2 + L2S2 + L4S2 had
all nonzero coefficients equal to 1, showing us that each
irreducible summand occurs with multiplicity one.

The ordering in the NIST database agrees with the en-
ergy levels coming from the character calculation, while
both are significantly different than extending the the
Hund rule ordering for the ground state, unchanged to
higher states (as it had originally been envisioned in
Hund’s first paper) which would have been 3D, 3P, 3S1D, 1P, 1S.

Since the identification of term symbols is a matter of
spectrographic observation, it is also true that the char-
acter calculation agrees with experimental observation
to some extent.
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Recall, as I mentioned, that the number of of fine lines
coming from each irreducible representation must equal
either the preceding superscript in the term symbol mi-
nus one, a number which we’ve called s, or else it must
equal 2l where l = 0, 1, 2, ... is the number correspond-
ing to the letter S, P, ... whichever is the smaller; while
the total number of magnetic lines coming from all RS
lines combined must equal (s+1)(2l+1). Actually there
is a little ambiguity as such observation cannot detect
interchanging the two factors. the character calculation
agrees with experiment also.

Clearly action of SU2×SU2 commutes with the pertur-
bation operator, as the electrostatic potential function
is invariant for that whole group. Therefore the first or-
der electrostatic perturbation merely acts as a scalar on
each (irreducible) isotypical component for the action
of SU2 × SU2 in the case when the whole representa-
tion is multiplicity free. A little later I’ll mention how
to extend the calculation to the case of arbitrary multi-
plicity, and and also to obtain the frequencies of the fine
spectral lines (the fine structure of the spectrum).
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It probably is important though to stress that as elegant
as the character-theoretic interpretation is, it is describ-
ing nothing theoretically any deeper than the eigenspaces
and eigenvalues of the matrix X described a few pages
earlier, in this case a size 36 matrix. The coefficients of
that character are the eigenvalues of eigenspaces whose
dimensions are 15, 9, 5, 3, 3, 1. At the same time, having
a direct description (up to a complex scalar magnitude
and phase) of one explicit pair of highest weight wave
functions corresponding to each spectral line makes a
connection between geometry and physics.
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Here are a few levels for Helium and Lithium. There
was no attempt to discover the base energy of He III
or Li IV; in each case I’ve translated all three graphs
vertically to match. The vertical axis is frequency.

For Lithium, the graph shows using the perturbation co-
efficient of 0.69865 for the first excited level, and 0.741
for all the remaining levels. The translation made the
first pair of data points coincide, and the first pertur-
bation coefficient really only changed the translation for
all subsequent points. It might have made more sense to
have done a careful adjustment of the 0.741 perturba-
tion coefficient that was used for all subsequent points,
so that the overall slope of the green curve would be
exactly the same as the red curve.
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The perturbation had the effect of moving the blue curve
up considerably (the actual displacement is too large to
fit both curves on the page, as the legend explains). The
step-function behaviour of the blue curve is cancelled by
an opposite step-function behaviour of the perturbation,
so that what remains is only the amount of step-wise
behaviour that actually occurs when differences are re-
solved from the spectrum.

For the next atom, Beryllium, the perturbation coeffi-
cient of 0.53 matches most levels resolved from the spec-
trum, but the actual first four levels resolved from the
spectrum are on a much steeper line, not matching that
calculation at all
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I should explain what I mean by saying that the observed
levels are on a steep slope! What I mean is, we have
given the electron configurations and term symbols the
ordering which the perturbation calculation says that
they should have. That is, in the sequence

1s22s2 1S, 1s22s12p1 3P ◦, 1s22s12p1 1P ◦, 1s22s22p2 3P, 1s22p2 1D, 1s22p2 1S, ...

The same levels resolved as frequency differences are
spaced out differently, covering the whole range, so that
in the NIST database 1s22s2 1S is even considered to be
above the ionization limit.

Here is the character calculation determining these par-
ticular term symbols and their levels according to the
perturbation coefficient of 0.53.

With the perturbation coefficient instead set to 1, levels
2,3 and 4 can all be made nearly correct, but not the
lowest (ground) level.
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Regarding the Aufbau, the first place where the Auf-
bau actually contradicts considering sums of recipro-
cal squares is for Potassium, where the Aufbau says
1s22s22p63s23p64s1 has a lower energy level than 1s22s22p63s23p63d.
The 4p, 4s ordering is right for the compensation coeffi-
cient at .144 or less, and the 4p, 3d ordering is right for
values larger than .148. As I’m currently doing things
there is no value which puts all the configurations in the
correct order.

As a check that we have not made any mistake, and are
correctly copying/generalizing what is intended, we can
verify one of Condon’s statements in his book; that for
a p2 orbital, if you were to ignore inner electrons, the
energy ratios of the term symbols would be in the ratio
which he denotes (1S −1 D) : (1D−3 P ) = 3 : 2. We can
give the script a fictitiously high excited level of Helium
to test this, and we do find this ratio.
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The NIST classification online says that it is taken from
Raymond L. Kelly’s book, which uses a computer pro-
gram by R. D. Cowan, and consultations with many
spectrographers. As I mentioned, part of the analysis
would be experimental, as the actual dimension of each
representation is presumed to be the number of lines
which the line would split into when the atom is placed
in a strong magnetic field, or that it would not split if
it is a term with no expected paramegnetism.

The character calculation which I chose above, on the
other hand, is an explicitation of Condon’s example cal-
culation that
(1S −1 D) : (1D −3 P ) = 3 : 2. Condon does not use any
group theoretical notation, but his writing is clear, rig-
orous, and insightful.

Condon dedicated his book to Russell (although likely
the two never met), and he permanently resigned from
Los Alamos as soon as he learned of the inexplicable
secrecy there.
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Part II

Three corrections to the fine structure

Before starting our discussion, I cannot resist making
at least three independent corrections to what is known
as the ‘fine structure.’ I haven’t mentioned how this is
understood currently, let me say that for example Con-
don’s book suggests adding to the Schroedinger operator
a sum over all the electrons of

1

2µ2c2r
∂/∂rU(r)L · S

where by U(r) he means the electric potential function,
and by L · S he means the product of of SO3 × 1 and
1 × SU2. Such a calculation is justified by papers of
Thomas, Frenkel and others, supported by the approval
of Pauli in the literature, and L · S is interpreted as
a ‘quantized dot product,’ the notion to have been that
angles themselves are quantized. Here, the letters L and
S each ambiguously refer to the tensor operators which
describe the action of the Lie algebra and their duals,
such that L2 and S2 are the Casimirs of SO3 × 1 and
1 × SU2, and it is not necessary then to use L and S,

but only to write LS = 1
2((L + S)2 − L2 − S2). Things

like how, on wave function which is isotypical for the
diagonal subgroup, (L + S)2 acts by 4j(j + 1) while L2

and S2 act by 4l(l + 1) and 4s(s + 1) when j, l, s are
half-integers indexing the isomorphism types, have led
most theorists to a notion that 4l(l + 1) should be un-
derstood as a ‘quantized squaring’ operator applied to
l. Even Weyl believed that.
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The results require choosing two ‘gyromagnetic ratios,’
and a ‘Thomas half,’ and even then they disagree with
experiment for any atom with more than one electron,
though there are cases when it works well.

It is important to understand, as we said earlier, that
things which might be called orbit-orbit coupling, are,
when correctly understood, merely matters of labelling,
and do not actually affect the spectrum. Here, Thomas,
Frenkel and others suggest just adding a new term to
the Schroedinger equation.

We have been using the letters L and S to denote points
in a chosen maximal torus, and let’s temporarily use L2

and S2 to denote the Casimir operators. Then, since L2

and S2 have a constant effect on the whole collection
of spectral frequencies coming from one term symbol
(if we consider term symbols to be different in cases
of multiplicity), there is no experiment currently done
which could possibly make any distinction between any
two of the following operators used in place of LS

1
2(L+ S)2

1
2((L+ S)2 − L2)
1
2((L+ S)2 − S2)
1
2((L+ S)2 − L2 − S2).

Any of these can be used equivalently, as far as agree-
ment with experiments to date, and the preference for
the last-listed possibility was likely only to perpetuate
the notion of a ‘quantized dot product.’
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Now, the second possibility has a different interpreta-
tion. It is this: that surely what is called (L + S)2 is
the Casimir that corresponds to actual rotations of three
dimensional space. This requires, by the way, thinking
that SU2 actually is the rotations of space, and so actu-
ally I mean the rotations of the line bundle which corre-
spond to rotations of space by a double cover. Surely the
fact that each spectral line can be assigned a difference
of frequencies each corresponding to exactly one space
of wave functions which is an irreducible representation
of the diagonal group, is because of this. That is, the
diagonal group is the symmetry group which really acts
in the final analysis, when no approximations are made,
when one is being completely precise.

But when people apply Schroedinger’s operator, they do
not apply it to the mysterious two-dimensional vector
space Cα⊕ Cβ. It acts as the identity there.

If Schroedinger’s operator is conjugated with the 1/rl

map to cancel out the radial effect, the result seems to
be a multiple of the Casimir that is called L2. But this
was the wrong one.
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More precisely, what I mean is this: if we take a homo-
geneous h(x, y, z) of degree l, and write it as rlh(xr ,

y
r ,

z
r)

then the Laplacian satsifies Leibniz rule for this prod-
uct, resulting in an eigenfunction which is a sum of two
terms. One of the two terms is l(l+1)

r2 which is the spatial
rotational Casimir eigenvalue (2l)(2l+2) times 1

4
1
r2 . If we

understand the polynomial as a coefficient in a one-form
such as h(x, y, z)du+ g(x, y, z)dv and view du and dv as
principal parts of O(1) on the Riemann sphere, then the
principal parts exact sequence on global sections (we will
describe this in more detail later) filters the vector space
by the image under du 7→ (x + iy), dv 7→ (x − iy) and
kernel consisting of homogeneous polynomials of lower
degree multiplied by du ∧ dv.

Now if the coefficients of du∧dv and 1 are re-interpreted
as polynomials, and the same substitution is done by
which each monomial such as xi is factorized as ri xr

i, the
eigenfunctions on the two associated graded parts will
correspond to the Casimir for the diagonal group. Later
we will understand the diagonal group as a subgroup of
a semidirect product also, in a way that is more closely
related to bundle automorphisms.
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Although we have not posed any global equation analagous
to Schroedinger’s equation which might yield two such
different radial coordinates or radial degrees, the fact
that the fine structure matches the calculation suggests
that Schroedinger’s equation ought to be replaced by
a simple equation involving coordinates on the tangent
space of Euclidean space which would at this point of
the analysis lead to a restricted operator in which the
action on the single radial coordinate of the spatial rota-
tion Casimir would in this way be replaced by an action
of the natural Casimir.

Then, instead of using the last formula, interpreted as a
‘quantum dot product,’ it seems better to use the second
one, interpreted as a ‘correction term.’
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But then, the function coefficient should not be anything
like

1

2µ2c2r
∂/∂rU(r)

It should be, as a first guess,

(
e2

r
)(

1

h
)(

1

r2
),

equivalent to adding to the electrostatic perturbation
the sum the of the effects of the Casimir multiplied by

(
e2

ri
)(
h

2π
)2(

1

2µ
)(

1

h
)(

1

4πε
)2(

1

h
)(

1

r2
i

).

The term involving ε and the subsequent one involving
h are included just here so that the answer will be in
cycles per second. The factors of h cancel.

This is quite a different number, especially as it only in-
volves the first power4 of the electron mass µ, one would
expect this to be off by many many orders of magnitude.

However, we see that if we choose the electrostatic per-
turbation coefficient of 0.551139 to make the first level of
Magnesium correct, it gives not an expected five orders
of magnitude of error, but rather, for the two higher fine
levels, five orders of decimal digits of accuracy.

4and actually the corresponding number involves the zero’th power
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That is, the increases of 20 and 61 are correctly calcu-
lated in this case. There are other cases when the cal-
culation is not as good, and it could be a coincidence,
though still true, that choosing the perturbation coeffi-
cient to make the first level correct regarding the electro-
static perturbation also makes the two higher fine levels
correct regarding the fine structure. The calculation can
be seen5

http://www.spectrograph.uk/index.html?pmult=.551139&fmult=2/pmult&finecorrect.checked=false&autocorrect.checked=false&usepmults.checked=false&dofine.checked=true;nextt2(12);nextt2(12)

5The explanation for the multiplier of 2/pmult is that it cancels the effect of the per-
turbation coefficient on fine structure and re-introduces the coefficient of 2 in the radial
eigenfunction of the azimuthal Lie algebra – this coefficient is currently unexplained though
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The calculation, setting the electrostatic perturbation
coefficient to .42, gives the first 13 fine levels of Nitrogen
all in the correct order

including the reversal of the three levels for the 1s22s12p4

configuration. To see this calculation use http://spectrograph.uk/index.html?pmult=.42&fmult=2/pmult&autocorrect.checked=false&usepmults.checked=false&dofine.checked=true;nextt2(7);nextt2(7);nextt(7)
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I should explain how this fine calculation can be justi-
fied, and then explain why it is really the completely
wrong calcuation.

The highest weight space for the diagonal subgroup within
an isotypical component for the whole group is approx-
imately determined by an intersection of four integer
lattices within one integer lattice. This is just because
subspaces of rational vector spaces are the same as sat-
urated sublattices (ones whose quotient is torsion-free).
So specifying the isomorphism type for the SO3 × 1
group, the 1×SU2 group, and the diagonal of the SU2×
SU2 group are choosing three sublattices of a lattice
whose rank is equal to the dimension of the space of wave
functions which we correspond to one ‘electron config-
uration.’ But then to specify the isomorphism type for
the action of a chosen diagonal torus, requires intersect-
ing with one further lattice.

In the language of quantum numbers, this last lattice
is not determined by a Casimir operator, but is just
the total degree of the ‘spin’ and ‘momentum’ quantum
numbers.

In multiplicity free cases this intersection of four inte-
ger lattices is just an integer lattice of rank one, a free
abelian group of rank one, and in general it is a free
abelian group whose rank is the multiplicity of the term
symbol within the ‘electron configuration.’

Interpreting the difference above as a correction term
that needed to be added to Schroedinger’s operator, to
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correct for the fact that it never acted on ‘spin coor-
dinates,’ we return to equation (7) where we intend to
include in the parentheses on the left side of the equation
a coefficient times the Casimir term

CJ − CL
r2

(now writing CJ instead of J2 for the diagonal Casimir
and CL instead of L2 for the rotational one). Since this
originates from the action of ∆ on the left side, as we’ve
explained, the coefficient must include as a factor the
reciprocal of the leading coefficient of the parentheses,
thus

−(
h

2π
)2(

1

2µ
).

If we interpret the Laplacian acting as we have, in the
global equation, we should also have a coefficient factor
of 1

4 , because the Laplacian has the eigenfunction term
l(l+1)
r2 while rotational Casimir is four times this6 and

an eigenfunction for the radial coordinate of (2l)(2l+2)
r2 .

However, since it matches experiment not to include
the coefficient of 1

4 we will omit it; and the explana-
tion must be that the operator that is appropriate for a
global Schroediger equation has the difference of quan-
tum numbers not half the degree of the canonical divisor
on the Riemann sphere, but the full degree. In other
words that as the degree in r matches the degree of
u2, uvv2 there should be some global phenomenon akin
to a separate radial function for zero forms and two-
forms, which behaves like a square-root of r.

6This discussion applies to the Casimir scaling which gives eigenvalues of (2l)(2l + 2)
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For some reason it matches the data not to cancel out
the coefficient of e

2

ri
now, and with little insight as to why,

we include this and also 1
h to make the additional term

independent of the value of h when all is multiplied out
(we saw that above, that the occurrences of h all cancel).

And then the coefficient of of the eigenvalue l(l+1)
r2 be-

comes

−(
1

h
)(
e2

ri
)(
h

2π
)2(

1

2µ
)

and we can write it into the equation so that (7) becomes
modified to be

∆Ψ = −(
2π

h
)2(2µ)(

∑
i

kpβe
2

4n2
i

+ E1(t)

+
∑
i

e2

ri
(kp − t

h

(2π)2

1

2µ
(CJ − CL)

1

ri2
)

− t
∑
i<j

e2

ri,j
)Ψ.

When we perform the calculation the terms in the last
two lines are multiplied by 1

h(4πε)2 to convert to frequency
in cycles per second.

The next-to-previous expression gives rise to the pertur-
bation operator that is to be added to the electrostatic
perturbation operator before any spectral analysis can
be done.

Now let me say how the calculation is still wrong, even
while often now appearing giving the right answer.
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In the first place, interpreting the added operator as a
difference, a correction term, which needed to be added
to the Schroedinger operator, to correct for the fact that
it never acted on ‘spin’ coordinates, the corrected con-
stant above, noting that what are called L2, S2, (L+S)2

are Casimirs for groups affecting only the coordinates
which would describe the position of one electron, then
the calculation of the perturbation matrix is done with
the extra term included, and in the same basis. In the
multiplicity free case, the frequency is taken to be the
eigenvalue using any nonzero element of the free abelian
group as an eigenvector. When there are multiplici-
ties one would look for the spectrum of the operator
restricted to the span of the lattice.

In the second place, the occurrence of e2

hri
is really unex-

plained, it should just be 1 if we really are talking about
a difference correction term for the Laplacian. One
would seek an explanation for why the correction term
in the Laplacian should need to become more significant
in proportion to the electrostatic attraction. Note that
the ratio between E and e2 is the same as the ratio be-
tween α and β, in this regard. In any case it would be
wrong for me to dismiss the correction term as describ-
ing ‘spin-orbit’ coupling if I allow it to depend both on
the Laplacian and on the electron charge in this way,
and it could indeed be describing a coupling.
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One explanation for wanting fmult=2/pmult or slightly
smaller to make the data match better may be because
we should have used (2π

h ) in place of ( 1
h). After all, the

constant h without any denominator of π has never oc-
curred except in conjunction with correcting measure-
ment units of the ‘permittivity of free space,’ whereas
2π
h occurs whenever we differentiate Ψ with respect to
time. Then instead of removing the factor of 1/4 we
should have left the factor of 1/4 in place. Thus perhaps
the coeffifient which we introduced as our first guess, of

(
e2

r
)(

1

h
)(

1

r2
)

should have the denominator of 2π replaced by 4, be-
coming

(
e2

r
)(

1

4
)(

2π

h
)(

1

r2
)

and the second guess for what our first correction should
be, the equation then being

∆Ψ = −(
2π

h
)2(2µ)(

∑
i

kpβe
2

4n2
i

+ E1(t)

+
∑
i

e2

ri
(kp − t(

h

2π
)

1

2µ
(
CJ − CL

4
)

1

ri2
)

− t
∑
i<j

e2

ri,j
)Ψ.
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Because the javascript implicitly applies the electron
charge multiplier pmult to this term, the value of fmult
that would match this equation in the javascript is 2π

4 pmult =
π/2
pmult .

A third, seeming much more likely possibility, for what
should be our first correction, is that the factor of e2

ri

should actually be
kpe

2

ri
meaning the kp should be outside

the parentheses in the second term

∆Ψ = −(
2π

h
)2(2µ)(

∑
i

kpβe
2

4n2
i

+ E1(t)

+
∑
i

e2

ri
kp(1− t(

h

2π
)

1

2µ
(
CJ − CL

4
)

1

ri2
)

− t
∑
i<j

e2

ri,j
)Ψ.
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Actually, here is a possible argument which would in fact
justify making both changes, including the multipicative
factor of kp in the extra term.

What we might do is perturb a wave function Ψ a little
bit, so we can imagine

Ψ(t) = Ψ(0) + (
∂

∂t
Ψ)(0).t+ ..... (8)

and now we also do the perturbation analysis on Ψ, with
another parameter s which just adjusts the electrostatic
effect.

We write Schroedinger’s equation

∆(Ψ) = (
2π

h
)2(2µ)(EΨ− kp

∑
i

e2

ri
Ψ + s

∑ e2

ri,j
Ψ) (9)

with s the perturbation parameter which just multiplies
the electrostatic term, so when s = 1 it is the ‘correct’
equation, and we substitute in equation (8), but we are
going to ignore the term st as it is ‘second order’ and
will not contribute to the derivative.

Since the equation is totally linear, the derivative should
itself be a solution. Then

∆(
∂

∂t
Ψ) = (

2π

h
)2(2µ)(E

∂

∂t
(Ψ)− kp

∑
i

e2

ri

∂

∂t
(Ψ)),

and here we rightfully can ignore the further term (not
write it) and solve just for the partial derivative ∂

∂t(Ψ).

This gives

∂

∂t
(Ψ) = (

h

2π
)2(

1

2µ
)(

1

E
)∆(

∂

∂t
Ψ) +

kp
E

∑
i

e2

ri

∂

∂t
(Ψ)
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When we expand Ψ in the Taylor series in t at time 0 in
the middle term of (9) we get

∆(Ψ) = (
2π

h
)2(2µ)(EΨ− kp

∑
i

(
e2

ri
)[

Ψ(0)+t(
h

2π
)2(

1

2µ
)(

1

E
)∆(

∂

∂t
(Ψ))+t

kp
E

∑
i

e2

ri

∂

∂t
(Ψ)+

t2

2!
(...)...

] + s
∑

(
e2

ri,j
Ψ)

We already calculated the derivative with respect to s

of E due to the electrostatic effect (the last term) which
is turned out to be the number e2

(4πε)2 (
1
h) times the per-

turbation effect of the sum of the 1
ri,j
.

If we look at the middle term in the square parentheses,
we write

∂

∂t
(Ψ) = (

2π

h
)Ψ

and

∆(
∂

∂t
(Ψ)) = (

2π

h
)∆(Ψ)

and when this acts on a radial coordinate ri it will con-
tribute then one eigenfunction term

(
2π

h
)(

1

4
)(

1

r2
)CJ

The 1/4 is there because the eigenvalues it contributes
involve l(l+ 1) where the conventional Casimir involves
(2l)(2l + 2).
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When we multiply everything out, we will multiply this
by

kp(
h

2π
)2(

1

2µ
)(1/E)

The magnitude of the derivative, this time with respect
to t not s, will be by the same calculation which we
already made for sas far as the units of measurement
etc and this will mean we are to multiply this by

e2 1

(4πε)2
(
1

h
)

We also multiply by 1
ri
, and this just means that the

result will be the perturbation matrix for the sum of the
r−3
i times the coefficient

(
2π

h
)(
CJ − CL

4
)kp(

h

2π
)2(

1

2µ
)(

1

E
)e2(

1

(4πε)2
)(

1

h
)

The h’s cancel so let’s write it without them, and let’s
leave off the e2( 1

(4πε)2 )(
1
h) as that is a standard thing (the

constant already I multiplied the perturbation matrix of
the sum of 1

rij
by to get the electrostatic matrix).

And this means the extra factor to put in front of the
matrix describing the Hilbert space projection for the
first exterior power of the sum of the inverse cubes of the
ri, to get one of the components of the perturbation ma-
trix describing the change in time t, is the corresponding
matrix entry of

(
h

2π
)kp(

CJ − CL
4

)
1

2µ
(

1

E
)
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For higher exterior powers the perturbation calculation
follows from this in a standard way which is also the
extension of the projected action by a derivation of the
exterior algebra.

The javascript has been using

(
h

2π
)2(

1

2µ
)(

1

h
)(CJ − CL)

with the 1/h unexplained, times the multiplier fmult
which can be set in the url, for example.

Replacing what it is now with what this should suggest
amounts to choosing fmult to be

kp(
π

2
)(

1

pmult
).

That is, if we could just ignore that (1/E) there!

Such a rough calculation does seem to be justified by
the case of Chlorine, where once pmult and emult are
chosen, the value of fmult needed is about 20 (for atomic
number 17).
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One can repeat the calculation with this link http://spectrograph.uk/index.html?pmult=.495&emult=3.50192&fmult=20.3733&dofine.checked=true&autocorrect.checked=false&usepmults.checked=false&nextt2(17)&nextt2(17)

and pressing ‘compare external.’

For most atoms (particularly the metals) it gives a fine
structure about ten times larger than the observed struc-
ture.7

7 A checkbox called ‘other’ in the explorer sets fmult to one with this particular theoretical
justification. The calculation for Chlorine just above does not include the denominator of
pmult and allows the pmult of .495 to rescale the electron charge in its effect on the fine
structure therefore, there is no checkbox in the explorer that makes this particular choice for
all ions though it can be entered in the url including for example &fmult=1/pmult
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Actually, we can ignore the (1/E) as we made an error
differentiating Ψ; it is cancelled when we differentiate Ψ
with respect to t and a factor of iE appears... perhaps
the i also cancels the ratio between the Weyl opera-
tor and the restriction of the Legendre operator....but
I should really stress that this analysis above is very
heuristic, and I have intentionally been uncareful about
the order of operations, for instance multiplying

∑
i 1/ri

with
∑

i 1/r
2
i either before or after projecting the action

of each term to a single electron configuration; thus the
sum of 1/r3

i could be replaced with a sum of 1/r2
i rj. The

absence of a coefficient for the number of terms suggests
that it is the perturbation actions that are composed
and therefore we see only one term (the dominant diag-
onal term) from a larger sum of contributions; however
the analysis above was really only meant to be a dimen-
sional analysis to explain the order of magnitude of the
chosen coefficient. Also we omitted many other terms
in the analysis which of course could be continued much
further.

Note too that some of the coefficient factors which mul-
tiply CJ should be reciprocated and put as a leading
coefficient of −CL if we want to continue to think rig-
orously of correcting for the failure of the Laplacian to
act on derivatives in the classical interpretation.

Something that is not right about this analysis is that I
pretended that there is one ‘r’ which serves the needed
purpose with respect to both notions of angle.
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In the second place, the actual eigenfunction is not going
to be at all a Q linear combination, or even a C-linear
combination, of the basis functions we’ve chosen. Ignor-
ing the radial part, these functions were taken to be a
basis of the homogeneous harmonic polynomials.

I mentioned before that a mistake people make is to as-
sume there is a chosen basis. Well, here it becomes quite
obvious that this mistake is prevalent in all understand-
ings of quantum mechanics, not only in the teaching of
quantum mechanics, and it arises from the relation be-
tween two interpretations, one by Legendre, and one by
Weyl.

Recall too, the notion that representation theory should
be relevant at all is one the weakness of which Weyl
himself was aware of, commenting that molecules really
typically do not have any symmetry at all.

The basis of homogeneous harmonic polynomials of de-
gree l which we chose, which is due to Legendre, can be
produced starting with

(r2 − z2)l.
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One admits the relation in three space with coordinates
x, y, z and a radial coordinate r that r2 = x2 + y2 +
z2, but one considers the operator ∂

∂z which does not
preserve that relation. For a number l, beginning with
the function

(z2 − r2)l

one chooses a number a = 0, 1, 2, ..., l and constructs a
basis of the homogenous harmonic polynomials in x, y, z
consisting of the real and imaginary parts of

(x+ iy)a
∂

∂z

l+a

(z2 − r2)l.

If we complexify, thinking of x, y, z, r as complex vari-
ables, then we may write

z2 − r2 = x2 + y2 = (x− iy)(x+ iy)

and the expression above is

(x+ iy)a
∂

∂z

l+a

((x+ iy)l(x− iy)l).

Since ∂
∂z commutes with multiplication by x+ iy this is

just

((x+ iy)
∂

∂z
)l+a)(x− iy)l

= δl+a(x− iy)l

where

δ = (x+ iy)
∂

∂z
.
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It follows that we can combine l and a into a single value
m, that is, for any numbers m and l whatsoever we have

δm(x− iy)l

has harmonic real and imaginary parts. This is true be-
cause the real and imaginary parts of the anti-holomorphic
function (x − iy)l are harmonic, and δ commutes with
the Laplacian (its real and imaginary parts are in the
rotation Lie algebra as we’ll see in a few lines).

This derivation δ satisfies

(x+ iy)(x− iy) = r − z2 7→ −2(x+ iy)z

and so

δ(x− iy) = −2z.
δ(x+ iy) = 0
δ(z) = (x+ iy),

giving

δ(x) = −z
δ(y) = −iz
δ(z) = (x+ iy).

This calculates δ then

δ = (x
∂

∂z
− z ∂

∂x
) + i(y

∂

∂z
− z ∂

∂y
).

We’ll later give a geometric explanation of this, but
first let’s look at Weyl’s representation-theoretic point
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of view. This is to think that (x+ iy)(x− iy) = r2 − z2

for r = x2 +y2 +z2, and to use operators which act triv-
ially on r. If we restrict to the subvariety defined by the
rule r = 0, we have (x+ iy)(x− iy) = (iz)2. This is the
equation of a projective line that can be parametrized
as [u : v] with x + iy = u2, x − iy = v2, iz = uv, and
the representation-theoretic lowering operator, u∂/∂v,
considered modulo the Euler derivation as a vector field
on the Riemann sphere, acts now on sections of O(2) by

v2 7→ 2uv 7→ 2u 7→ 0.

Thus by Weyl
(x− iy) 7→ 2iz

z 7→ 1

i
(x− iy)

(x+ iy) 7→ 0

so the Weyl operator is −iδ. If we do not restrict to the
variety r = 0 then the operator u∂/∂v sends x− iy = v2

to 2uv = 2
√
x2 + y2 = 2

√
r2 − z2 and this is no longer

equal to 2iz, in place of i there is a multiplicative factor
of

−(
r

z
)
√

1− (z/r)2.

This coefficient does have a multipole, or Taylor series
expansion as

−r
z

+
∞∑
i=1

(2i− 3)!

22i+2i!(i− 2)!
(
z

r
)2i−1

and it is an interesting question whether a Borel summa-
tion can prevail here to begin to globalize the Schroedinger
solutions which by this analysis are very local.
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Thus unless we can make sense of this multipole expan-
sion we cannot really make our second correction. Be-
fore we discuss the third corrections to the fine structure,
it makes sense to describe the way that it can be cal-
culated. For a configuration of k electrons, within the
vector space which is the solution space for Hydrogen
but with the proton charge suitably adjusted, we choose
the vector space which corresponds to an ‘electron con-
figuration. By subtracting a suitable integer from each
of the three Casimirs (the space rotation Casimir, the
‘spin’ Casimir, and the diagonal Casimir), and also by
subtracting an integer from the matrix which multiplies
each basis element by its mJ number, we obtain four
endomorphisms of an integer lattice. The rank of the
sublattice which is the intersection of the four lattices is
the multiplicity of the corresponding term symbol, usu-
ally equal to one.

It should be true on general principles that the operator
which is the sum of the perturbation coming from the
electrostatic effect and the perturbation coming from
the Casimir difference times 1

r3 should preserve this sub-
lattice. In fact, it turns out, that even the classical
perturbation operator needn’t commute with the clas-
sical rotational Casimir, and therefore our attempt at
correcting to match a hypothetical correct Schroedinger
differential equation is not exactly right. Nevertheless
we project the total perturbation operator including the
classical electrostatic term plus the correction term as
an operator on the sublattice, and this is how we deter-
mine the fine structure.
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There are two further worries now. One is that the inte-
ger vectors which arise as the intersection of four sublat-
tices of a lattice, have been constructed without careful
regard to the change of basis between the standard ba-
sis of harmonic homogeneous polynomials times analytic
radial functions which is created by iterating the Leg-
endre operator to create basic homogeneous harmonic
polynomials, versus the basis created by Weyl’s lower-
ing operator. The fact that the radial coordinate has
actually be set to zero is worrying. A calculation which
we’ll show later gives that the Legendre lowering oper-
ator, once it is restricted to the Severi-Brauer variety
agrees with the Weyl operator if one is willing to mul-
tiply just by the imaginary number i. Perhaps as the
raising operator is multiplied by −i the effect on the
Casimir cancels out, as if one replaces f by if and e by
−ie in the formula for the Casimir

2ef + 2fe+ (ef − fe)2

each term ef or fe is unaffected.

Regarding the fact that the sublattice is not actually
preserved, and a projection operator must be interposed,
a bit later I’ll describe how in the javascript, we use a
contrivance, which is our third correction to the fine
structure : first removing the correction term in the
Schroedinger operator, this determines a false fine struc-
ture. Then repeating the calculation with the correction
term in place, and subtracting the ‘false fine structure’
which was there, but should not have been there, when
the correction term had been removed.
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This does not affect the calculation for magnesium, but
gives a slight adjustment of fine levels, for carbon, for
instance.

This does not address the deeper issue that in place
of integer vectors, one is talking about wave functions
which are not actually linear combinations of homoge-
neous harmonic polynomials times analytic functions of
r.

An attempt to use perturbation theory with this existing
space of functions fails due to the fact that whenever one
of the Legendre basis elements is multiplied by any term
in the multipole correction expansion, as a coefficient
function, it actually becomes completely orthogonal, in
the Hilbert space sense, to all the conventionally used
basis wave functions.

The use of a basis consisting of homogeneous harmonic
polynomials times radial functions fits well with Schroedinger’s
and Legendre’s approach, but the multipole correction
needed to make this compatible with Weyl’s representation-
theory approach, where he lets r tend to zero while al-
lowing x, y, z to remain finite, would require a different
function space. I mentioned that the particular choice of
Hilbert space structure has no effect on first-order per-
turbations, except in choice of orthogonal complement.
In this case things become orthogonal in the Hilbert
space sense anytime after time zero of the perturbation.
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A discussion of perturbation theory

Considering the actual sum of the Schroedinger operator
plus a constant t times the electrostatic term, we can
define a function e(t) for each energy level. That is,
once we choose an initial value of each solution for t = 0,
then by continuity as a function of t we can say which
solution is which. That is we can lift a path in t to
an appropriate covering space, and we have then that
each energy level e is not a function of t. So by path
lifting we get functions e(t). These become undefined
when two values coincide, and can be extended however
complex analytically, in the way that is familiar for maps
of Riemann surfaces.

We want to know e(1), and we only can know d
dte(t) at

t = 0 independently of the Hilbert space structure. That
is, perturbation theory is independent of the Hilbert
space structure, only depending on the decomposition
of a larger space of functions into the space one is con-
sidering direct sum an orthogonal complement, but the
inner product structure on that orthogonal complement
does not need to be specified at all.

The value e(1) is

e(t) +
d

dt
e(t) +

1

2!

d

dt

2

e(t) + ......
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when t = 0, and what makes sense is to use an inter-
mediate value of t (a value less than 1). In fact this
can be viewed as the ‘Taylor theorem with remainder,’
whereby the entire infinite tail of a Taylor series can be
evaluated precisely by changing just the point at which
one evaluates the derivative at the last term of the Tay-
lor polynomial.

Thus we are trying to find a number c so that when
t = 0

e(t) + c
d

dt
e(t) = e(t) +

d

dt
e(t) +

1

2!

d

dt

2

e(t) + ...

That is, we are trying to find the number

c = 1 +
1
2!
d
dt

2
e(t) + 1

3!
d
dt

3
e(t) + ...

d
dte(t)

when t = 0, although each term of the numerator is
unknown. The left side describes an eigenvalue of the
Schroedinger operator plus c times the perturbation ma-
trix, meaning the projection of the electrostatic term
onto the e(0) eigenspace.

When one looks at the effect of changing the number c
on all the predicted energy levels for an electron con-
figuration, it makes them move around like a swarm of
flies.
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The video http://spectrograph.uk/fullscreen.html?file=quantumvideo.mp4

shows what happens. The number c which is the coeffi-
cient of the perturbation matrix ranges over time from
0 to 1, and one sees initially when it is near zero, the
predicted energy levels which are red dots, are near the
reciprocal sums of squares, the blue dots.

As time goes on (as c increases) these segments of the
step function assemble themselves together. One sees
that there is apparently a critical value of the discrimi-
nant of the sum of the Schroedinger operator plus elec-
trostatic repulsion, at a point when all the segments of
the curve join together and agree with the green dots
(actual levels resolved from the observed spectrum).

After this, the green dots appear to move chaotically.
What is being shown is this: the red dots are indexed
uniquely, each by a pair consisting of an electron config-
uration (there is only one here) and term symbol. This
is because the element here, Beryllium, has multiplicity-
free electron configurations. The green dots are assigned
also term symbols by convention, although what mat-
ters more here is that they have a total ordering by real
value.
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The numbers are arranged as one would graph a se-
quence, so that the horizontal coordinate is the unique
indexer of these levels. This is done according to the
real value of the predicted values. After the c value ex-
ceeds its critical value, the ordering of the term symbols
changes in order that the real values remain in increasing
order. If one thinks about it, it is preferable to think this
way, as we rely on no prejudice about which term symbol
should actually be assigned to which actual value. This
means that the actual values, the green dots, see a per-
mutation in their horizontal position, and the observed
graph breaks apart into a swarm of separate values.

The graphs are shown with the horizontal coordinate
chosen so that the rightmost red dot (highest predicted
value) agrees with the highest observed value resolved
from the spectrum. In fact the distance vertically from
either graph and the blue sums of reciprocal squares
graph is very much larger than shown.

Choosing the value of c which is a critical value for
the discriminant should make the predicted and actual
graphs correspond, but note this is only true near the
ionization limit (the right side of the graphs), if we take
that as a meaningful and well-defined reference. This
would make sense from considerations of notions of ab-
solute energy as this would be the energy when all elec-
trons are separated from protons and each other.
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Since we are trying to find the spectrum, and the lines
near the ionization limit have vanishingly small values,
it makes sense not to use any notion of absolute energy,
but rather to focus nearer the ground level.

Unfortunately, the levels are compressed near the ground
level, for reasons which certainly should have to do with
the unexplained Aufbau, which actually forbids what
should be some low levels by the existing theories, and
pushes them past the ionization limit.

Ignoring this, there is also the issue that the value of
c which has the right permutation for the actual levels,
has the wrong slope altogether.

It makes sense instead to do the following: to disallow
changes in c from making this permutation, or indeed
from affecting the fine lines, coarse lines, or even term
symbols or even electron configurations relative to each
other whenever they have the same sum of recirpocal
squares.

Thus, what we do is to multiply the variable represent-
ing proton charge by 1/c where it occurs in the exponent
of the exponential integrating factor in the formula for
the radial Schroedinger solutions, and also in the poly-
nomial part, and also where it occurs as a coefficient of
the sum of reciprocal squares, but not in the radial cor-
rrection term of the Laplacian which is the coefficient of
our difference of Casimirs CJ − CL.
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This has the effect that now the relevant power series as
far as their relative effect, only affect spectral lines which
are between two levels of differing sums of reciprocal
squares.

As for how to choose a value of c, a first attempt which
did not work is to consider the energy levels as roots of a
polynomial, and seek a critical value of the discriminant
as a function of c. Rather than explain why this didn’t
work, it makes sense to explain what does seem to work
to some extent. This is, to notice that the actual order-
ing of energy levels in nature seems to be a refinement
of the lexicographical ordering where sums of recipro-
cal squares are given highest priority, but that unlike in
the video where the effect of sums of reciprocal squares
causes discontinuities, rather, the division of the energy
calculation into one part coming from sums of reciprocal
squares and another part coming from an electrostatic
perturbation seems artificial and contrived.

And so that what one sees is that if levels are arranged in
lexicographic order, the value of c that is chosen should
be the one which minimizes the second successive differ-
ence of energy levels in the least squares sense for each
subsequence where the l quantum numbers are constant.
Choosing this value c (we call the multiplier ‘emult’ in
the javascript) does seem to give very good agreement
with experimental data, although this does not fix the
compression of levels near the ground.
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The actual perturbation coefficient we call pmult. The
ab initio energy level is then just a linear combination
of two parts, with the coefficients in the linear combi-
nation being emult and pmult, and we have an ab initio
statistical method of finding emult, while we just set
pmult=1.

Using both of these numbers it is possible to closely
match many atomic spectra, using the spectrograph at
http://spectrograph.uk, if you press ‘new electron’ a few times,
and then press ‘next config’ until it stops flashing and
then press ‘compare external.’

Since we have removed the unexplained Casimir term,
it is no longer true, using this spectrograph, that when
both coarse and fine calculations are done, that the
coarse value (result of the character calculation) de-
scribes what spectrographers call the ‘center of mass’
of the fine lines.

However, there was no reason for thinking that this
should have been so. The ‘center of mass’ is an adjunct
calculation with no experimental basis, and had perhaps
historical basis because of the very type of character cal-
culation which we’re doing now. Yet there is no reason
for thinking that the ‘center of mass’ should correspond
to anything in nature.
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A reason for allowing a difference between the ‘center of
mass’ of the actual fine lines, and the character value cal-
culation, is that any relation between them should rest
on the fact that one calculation (the character calcula-
tion) uses Weyl’s raising and lowering operators, while
the perturbation calculation uses the harmonic func-
tions whose exterior products correspond to the type
of tableau which Chemists use (where an orbital of type
p is described as a box in which one might put six eggs,
and so-on).

But the actual raising and lowering operator which pre-
serves the basis of harmonic functions is the Legendre
operator, and it differs from the Weyl operator by a
function coefficient. This is not well adapted to pertur-
bation theory as it multiplies the vector space associated
to an electron configuration totally into its orthogonal,
and perturbation theory cannot apply.

The comparison between the projective geometry and
representation theory taking place on the exceptional
divisor, versus the harmonic function theory when the
square root of r is considered to be a smooth real func-
tion, is the domain where things like the McKay cor-
respondence and other open problems in Maths reside.
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Here is the spectrum of Magnesium when we perform an
ab initio calculation which increases the effect of pro-
ton attraction only in its effect on sums of reciprocal
squares, to minimize discontinuities (second successive
differences) between those successive levels of constant
l where the sum of reciprocal squares would change, if
this effect were assumed larger than the electrostatic
perturbation so that the levels had been lexicographi-
cally ordered (though during the calculation no assump-
tion that they actually are lexicographically ordered is
needed). The value (called emult in the javascript) cal-
culates to a multiplier of 4.5, We see that the famous
4s1 3S1 −3p1 3P ◦0,1,2 triplet which is seen in stars appears
in nearly in the right position once three electron con-
figurations are included. Since there is only one discon-
tinuity, this chooses the value of proton charge in that
calculation which eliminates the gap between 4s1 3S and
3p1 1P ◦, setting both levels to 57 201.869. Nevertheless
which is good for neighouring values.
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And when this is done the neighbouring yellow triplet
also appears.

This calculation can be seen at

http://spectrograph.uk/index.html?emult=4.5;fmult=2;autocorrect.checked=false&finecorrect.checked=false&usepmults.checked=false&dofine.checked=true&nextt(12)&nextt(12)&nextt(12)

and then pressing ‘next config’ twice to make the yellow
triplet appear beside the green triplet, you will need to
zoom in with the arrow keys to see them.

An equivalent calculation, easier to remember but not as
well motivated conceptually, is to say that we are arti-
ficially changing the electron charge and proton charge,
but leaving the perturbation coefficient equal to 1. Here
is the ab initio spectrum of Carbon (or rather the ‘en-
ergy levels’ whose differences give the spectral frequen-
cies) when we artificially multiply the proton charge by
4 while multiplying the electron charge by 2. We see
that except for one misplacement in a fine energy level
the first 22 levels including both coarse and fine are in
same order as in the NIST database and roughly have
the same values. Here we are multipying the electron
charge by 2 in the term that relates to the fine struc-
ture as well as the coarse structure. Note that the ab
initio calculation begines to become incorrect after the
first 22 levels and even during the first 22 levels the fine
structure becomes too pronounced. Howver the coarse
structure is mainly repaired.
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You can generate the data by going to the spectrograph
with this link

http://spectrograph.uk/index.html?emult=4&pmult=2&fmult=2&autocorrect.checked=false&dofine.checked=true&usepmults.checked=false&finecorrect.checked=false&nextt(6)

and repeatedly pressing the button labelled ‘next con-
fig’, and press ‘compare external’ to compare with the
NIST data. I cannot explain why a larger value of fmult
is needed than 2/pmult although the value of 2 is too
large.

If you put &nostop=true after the index.html in the url,
the coarse structure will be repaired in the analagous
way for each atom or ion which you may choose.

Regarding the fine structure, if you press ‘clear’ and then
press ‘fine correct’ (in the current version ‘clear’ reloads
the whole page, so instead edit the url to replace ‘finecor-
rect.checked=false’ with ‘finecorrect.checked=true’) and
repeat the calculation, you will see this result
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with the fine structure also mainly repaired.

One issue is that now there is a ‘Lamb shift’ even for
Hydrogen, though the classical Lamb shift is incorrect,
and even has the wrong sign. One of the issues is that
one of the integrals in the perturbation calculation fails
to converge (this is for s orbitals), our calculation in-
volves a negative binomial coefficient which evaluates to
zero while the in actual integral evaluates to infinity. So
we would not expect the classical Lamb shift to have the
right value.

When the javascript spectrograph is allowed to choose
a coarse correction, it will adjust in such a way to find
the ratio [pmult:emult] independently of which value of
pmult is chosen. Changing this ratio changes the ratio
of variance between the electrostatic effect versus the
sums of reciprocal squares effect, though it changes this
variance ratio in a complicated way, the variance ratio
which agrees with the ab initio calculation does tend to
be the one which occurs in nature. Then the effect of
multiplying both emult and pmult by a constant is, on
the coarse scale, to scale levels by a constant, though
the effect on fine levels is more complicated. By setting
fmult=2/pmult at the outset this effect is compensated
and the fine structure appears to fall in line (though the
fine correction is slightly more complicated than this,
involving as it does the notion of a false fine structure).
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Half-integer values of l – first explanation

Regarding the issue of half-integer values of l, or the ex-
planation for the mysterious pair of complex variables u
and v which seem to arise from the Aufbau principle, one
temptation may have been to consider the symmetrical
sphere of a nucleus as the result of the Hopf map, that is
the projectivication of a complex two-dimensional nor-
mal space. That is, in comparing some maths to some
experimental data, it isn’t really ever clear what is be-
ing forced and what is occurring by choice. The half-
integer values may have arisen not due to being forced,
but some other choices may have led to a preference
to considering functions which actually were only well-
defined functions on the normal bundle of an embedded
Riemanns sphere in a complex surface. In this case the
surface would not be part of nature, but an artefact of
the way Sommerfeld had wished to think of it.

The ampleness of the conormal bundle of an embedded
Riemann sphere would require it to have negative self-
intersection; for example the nuclei of atoms might be
considered to be the result of blowing up points in a
smooth complex surface. This would be one way of ex-
tending the very explicit description of wave functions
to the case of half-integral values of l, without a need of
a gauge adjustment cocycle.
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An immediate difficulty with that idea is that it’s hard
to imagine the nucleus seen from a distance as looking
like anything but one point in space and time, hence
only existing for an instant, appearing then more like an
event than a particle of matter. Another, less serious,
difficulty is whether this precludes a anyone’s preferred
complex analytic ‘space-time’ being a minimal surface.

A third, now more serious difficulty, is that a choice of
coordinatization such as the Hopf map should never be
deemed necessary to give an explanation of a physical
phenomenon. Then one could rightfully answer that the
presence of the Hopf map is unexplained.
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Generalities about the Hamiltonian formulation

Before discussing Schroedinger’s function W , it might
be worth explaining the Hamiltonian formulation, what
it was intended to do. I’ll use notation from ‘classical
mechanics primer,’ especially as these can be simplified
if we allow throughout both the deRham differential d
of M and the one d′ of its tangent bundle N. Recall that
ε is the Euler derivation, j its contraction operator, and
that a vector field δ is involutive if iδη = j, and it is
Lagrangian for a closed one-form ω on N if δηω = ω.

It is easy to see that the involutive condition just means
that when f is a section of OM viewed as a function on
N constant along fibers, then δ(f) = df, where we view
df as a section of ON .

If one examines various statements that Lagrangian forms
make certain integrals critical, they just come down to
conditions which are satisfied just for Lie derivatives of
one-forms. They are nothing but criteria for recognizing
when a one-form happens to be a Lie derivative with re-
spect to a particular vector field, and they do not need
to be considered if one is already happy with the concept
that one forms have Lie derivatives.

In coordinates, locally, a section of ΩN can be written

ω =
∑
i

pid
′dqi + rid

′qi

with pi, ri sections of ON but qi are only sections of OM .
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Then ηω is only ∑
i

pid
′qi

an arbitrary section of the pullback of one forms from
M. And as long as δ is involutive, when we write

δηω =
∑
i

δ(pi)d
′qi + pid

′δ(qi)

we can rewrite the last term

=
∑
i

δ(pi)d
′qi + pid

′dqi.

To say that this equals ω again is to say

ri = δ(pi).

This is just the condition for ω to be the Lie derivative of
a one-form pulled back from M. But if ω is exact locally
so it is dL for a function L on M, then

pi =
∂

∂(dqi)
L

δ(pi) =
∂

∂qi
L

giving the familiar Lagrange condition

δ
∂

∂(dqi)
L =

∂

∂(qi)
L.

Given that δ is assumed to be involutive, this is not
expressing anything other than that we are looking at a
Lie derivative of a pullback from M .

The right side can be manipulated by both adding and
then subtracting the term

∑
i δ(qi)d

′pi. An organized
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way of doing that is to use Cartan’s equation δ = d ◦
iδ + iδ ◦ d. Thus for general ηω =

∑
pid
′qi we obtain

δηω = iδ(
∑
i

d′pi ∧ d′qi) + d′
∑

piδ(qi).

The first term is the contraction of an alternating form,
of course, and the second term is the differential of a
quantity

∑
i pdδ(qi) sometimes interpreted as twice the

kinetic energy. The point is that since we assume this is
an expression for ω and that ω is closed, so is the first
term on the right side. Locally writing this dH, the fact
that iδ is nilpotent of order two forces H to be invariant
under δ; it is sometimes interpreted as minus the total
energy, and so the whole right side is interpreted as the
deRham differential on the tangent bundle N of minus
the total energy plus twice the kinetic energy, or the dif-
ference between kinetic and potential energy. The iden-
tity between the coefficients of dH and the coefficients
of

iδ
∑
i

dpi ∧ dqi =
∑

δ(pi)d
′qi − δ(qi)d′pi

is the Hamilton equation which is a simple way of writing
an ordinary differential equation determining the rate of
change of the pi and qi. Note that in our current situation
considering δ to be involutive, δ(qi) is anyway nothing
but dqi viewed as a section of ON and the meaning-
ful information in such an attempt would only be that
∂
∂qi
H = δ(pi).
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As a practical matter, the Hamiltonian approach to solv-
ing physical problems can nicely be summarized like
this, then. To choose any one-form of your choice pulled
back from M, which we locally write if we wish

∑
i pid

′qi
and whose Lie derivative ω is closed. Then if one man-
ages to describe the function

∑
piδ(qi), which is ordi-

narily considered to be twice the kinetic energy, one is
done. Because the difference

δ
∑
i

pid
′qi − d′

∑
piδ(qi)

is again closed; locally writing this as dH for a function
H on the tangent bundle, one then has

δ(pi) = ∂/∂qiH.

That is, the rate of change of the pi are determined by
the spatial gradient of H, regardless of however one has
chooses the coordinates. The pi are functions on N and
as long as dp1 ∧ ... ∧ dpn is nondegenerate as an n form
on the tangent space fibers, the dqi can be expressed in
terms of these and the rates of change of the dqi obtained
by the appropriate Jacobian determinant. 8

8Interestingly, in formula (26) generalizing his treatment of the hydrogen atom to a ‘wholly
general conservative system,’ Schroedinger finds himself conjugating ∂/∂qi by the square
root of such a determinant, integrating over space to find his wave function by the Lagrange
multiplier argument, but it is made assuming the pi actually are the ∂/∂qi and that the
matrix is the matrix of a symmetric quadratic form expressing the kinetic energy.
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This is an appealling approach to physics, due to Hamil-
ton, and of course it does not depend on any notion of
energy or of conservation of energy, nor on the interpre-
tation of the function

∑
piδqi as twice the kinetic energy.

The two terms d′H and d′
∑
piδqi are the two terms of

the Cartan equation for δηω. In cases when it is pos-
sible to identify the tangent and cotangent bundle with
each other one sometimes takes for pi the function ∂/∂qi
and then

∑
pid
′qi is the natural one form, though the

impossibility of doing this relates to one of the problems
that a relativistic approach would need to deal with.
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Schroedinger’s function W

In the setting of Schroedinger’s paper, we cannot sensi-
bly take the function W (x, y, z, t) to be a function of
space and time, constant on fibers of N → M. For
ω = d′dW we would just have

ηω = d′W

and if δ is any involutive vector field δ(d′W ) = d′dW so

δηω = δd′dW = ω

showing ω is Lagrangian. Yet since ηω itself is a closed
form on the tangent bundle, the term iδ d

′ηω is zero; it
is explicitly δ(1)∧d′W − δ(W )∧d′(1) and the condition
of a hamiltonian function H that this is −d′H requires
H to be a constant not only on orbits of δ but on the
entirety of N. Then while the rule ∂H/∂qi = pi = 0
is true, such an equation does not determine the δ(dqi)
unless the qi are well-defined functions of the pi.

Some of the times Schroedinger says he is merely speak-
ing in analogies must be because he would have wished
to have dW really to have been a a general one form on
the tangent bundle pulled back from M, rather than a
closed form.
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A general ηω is locally
∑
pid
′qi, with qi sections of OM

and pi sections of ON , and it should not be assumed to
be closed. The equation (7) in his paper which Schroedinger
writes:

It is well-known that px = mẋ = ∂W/∂x

is an attempt to say that the differential of W should
be this form

∑
pid
′qi, using the deRham differential d′

of the tangent bundle. Here he assumes that px is a
component of momentum, an application of the notion
that the form ηω =

∑
pid
′qi can be taken to be the

canonical form on a cotangent bundle.

More importantly – a sin which is not forgiven by the as-
sumption of a Euclidean metric – Schroedinger assumes
that the form ηω is a pullback to the tangent bundle of
a single closed one-form on M. If we pretend that this
were so, we could deduce most of his formulas, but really
instead of equations equivalent to

δ(W ) = −H + 2T

he should be writing locally

δηω = −d′H + 2d′T

with
−d′H = iδ

∑
dpi ∧ dqi

The wave function is the exponential of iW times a func-
tion of space, and as we’ve discussed so far only the case
of standing waves (although he goes further in this pa-
per), the action of δ is only through its action on W.
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Half-integer values of l – other explanations

If one does not wish to think of nuclei as curves with
self-intersection −1, one might instead think that the
reason phases of wave functions sometimes do not line
up without a gauge adjusting cocycle is because the ac-
tual symmetries, actual changes of perspective have a
wavelike propogation. This interpretation even in the
simplest and most literal manifestation is one which will
always work, for example by just thinking of wave func-
tions as having the domain of definition being a group
itself.

However, a very down-to-earth approach, an alternative
explanation for the difficulties with half-integral values
of l, which is a special case of the three other approaches,
is suggested by how Schroedinger’s formulas really did
not work – they degenerate – if his function W really
is taken to be a well-defined time-dependent function
on M constant on fibers of N → M . That is, when he
would speak in analogies about making the Hamiltonian
‘homogeneous of degree two’ or replacing px, py, pz by
differential operators, what he probably meant to say
is that he really intended to exponentiate not invariant
spaces of purely imaginary functions, but, rather, act
upon invariant spaces of purely imaginary one-forms.
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Later things like the Bohm-Aharanov effect should not
really be in any contradiction with a purely classical me-
chanics interpretation of electromagnetic waves, if one
understands that if Schroedinger had been more careful
– rather than speaking in analogies as he admits doing
– the phases were never intended to be anything ex-
cept one forms on the tangent bundle which are in the
pullback of the sheaf of one forms on the configuration
manifold.

In the end this means he is needlessly, I think, requiring
that the logarithm of a wave function needs to be a well-
defined function.

That is, it is likely that if Schroedinger’s thinking is
written down rigorously, keeping track of when one is
working on a configuration manifold and when one is
working on a tangent bundle, then it becomes clear that
what is the one-form dW in this paper should not have
been assumed to be a closed form unless the relation
with the Hamiltonian approach was meant to be a de-
generate observation.
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A remaining issue is what it would mean to exponentiate
‘the function whose deRham differential is ηω’ in cases
when we know that no such function exists. The in-
terpretation of the phase of the wave function, at least,
would be path-dependent and for paths in the config-
uration manifold it is even a question whether phase
changes should depend on the speed of motion along the
path, as this would alter the lifted path is in the tan-
gent bundle. And the phases themselves could only be
sensibly measured relative to a moving point, something
by the way reminscent of what happens with magnetic
fields.

The discussion above is tentative, but even so it does
not approach any attempt to introduce relativity into
the atomic equations, or indeed even time dependence
of amplitude, and was just a discussion of a classical
mechanics interpretation of standing waves.
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The atom

The first thing which we wish to look at, having nothing
to do with chemistry or physics, is just the symmetries
of our coordinate system.

Let’s consider R3 to mean the usual real algebraic variety
with points R3. When one writes r2 = x2 + y2 + z2

in order to have a radial function r, this is correctly a
coordinate function on the affine quadric Q which is the
pullback

Q → R
↓ ↓
R3 → R

(x, y, z) 7→ x2 + y2 + z2

where the right vertical map is r 7→ r2. Then the top
horizontal map is the coordinate function r, and the map
Q→ R3 is branched along the subvariety defined by the
equation x2 + y2 + z2 = 0. The variety Q is the affine
variety in coordinates x, y, z, r given by the equation x2+
y2 + z2 = r2.

The symmetry group of the quadratic form x2 + y2 +
z2 − r2 = 0 is not going to be relevant, as this depends
on a four-dimensional affine space with little physical
meaning.
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The affine subvariety V of Q defined by the equation
r = 0 has one point which is real rational, and if we
minimally resolve this singular point we get of V , the
resulting variety Ṽ has exceptional divisor P with no
real rational points at all; it is a Severi-Brauer variety.
The whole of Ṽ is isomorphic to the cotangent bundle
of the Severi-Brauer variety P.

When we formally use a sphere of angles which is ob-
tained by blowing up, if we wish to work analytically
using a square root of the radius, then we thus find that
the sphere of angles is only a Severi-Brauer variety, it
has no real rational points. But this is not to say that
blowing up the point has made it disappear. Rather
we may still work with the function sheaf on the cotan-
gent bundle of the Severi-Brauer variety, including its
exceptional divosr, just as we may work with complex
eigenvalues of a real linear transformation.

The variety P is not just a point, it has symmetries,
while having no real rational points. In fact its Lie al-
gebra of vector fields is so3(R).
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In linear algebra, a person often considers a real matrix
such as the matrix of a rotation of a plane, and considers
that it has as its eigenvalues a natural complex conjugate
pair. Here we have a whole real sphere made up of
such complex conjugate pairs. The set of ratios [x : y :
z] in complex three space which satisfy the rule that
x2 + y2 + z2 = 0, reduced modulo the fixed point free
continuous action of complex conjugation, gives a real
projective plane. But it is not necessary to complexify
anything to see it.

As a scheme over the reals P is a well-defined object.
The moduli of irreduible coherent sheaves on P has a
natural classical topology, it is the same real projective
plane which, if one had decided to complexify every-
thing, would have occurred once one had reduced the
Riemann sphere modulo a continuous antiholomorphic
automorphim. The classical topology on the moduli of
irreducible coherent sheaves on P gives the same space
(a real projective plane) and does not require complex-
ifying anything to see it, it does not require complex
numbers or complex conjugation.

If Ṽ , when viewed as a line bundle over P, were the
tensor square of some other line bundle M, so M⊗2 ∼= Ṽ ,
then as a variety M would be a cyclic branched cover of
order two of Ṽ .

As a vector bundle over P, its cotangent bundle, which
is isomorphic to Ṽ as line bundle, is not a tensor square,
and so this cannot take place.
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Rather, if we delete P from Ṽ , that is the same as delet-
ing {0} from V, and we find that that what is left V \{0}
has a four sheeted etale universal cover, with Galois
group cyclic of order four.

Because the Galois group is cyclic, the three etale covers
of V \{0}, one being the identity, one being the complex-
ification, and one being the universal cover, are linearly
ordered. It is not possible to perform the branched cyclic
cover until after complexifying.

Yet the combination, of complexifying and then taking
the branched cyclic cover of the complexification of Ṽ ,
and therefore of the two steps separately, are completely
natural.

One is passing to the degree four universal cyclic cover
of the cotangent bundle of P which is branched along P.
Also each step is familiar in a different way; once Ṽ is
complexified it becomes a line bundle on the Riemann
sphere P1 with section sheaf O(−2), and is covered by
the line bundle with section sheaf O(−1).
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It is also relevant, what we’ll consider later on, that cov-
ering spaces are natural for vector fields – vector fields
lift naturally to covering spaces, including etale covers –
but not for automorphisms. We can apply this principle
for the entire degree four etale cover, and we have that
for example vector fields on the complement of P in Ṽ
lift uniquely through the degree four etale cover, and
become holomorphic vector fields on C2 \ {0}. We have
seen this in coordinates in Chemistry textbooks.9

The complexification of V is isomorphic to the ordinary
double point C2/{1,−1} – the result of contracting a −2
curve, and the correspondence between coordinates is

x =
u2 + v2

2

y =
u2 − v2

2i

z =
uv

i
and correspondingly

u2 = x+ iy

uv = iz

v2 = x− iy.

9In retrospect, it was misleading for me to have earlier quoted Weyl referring to a central
extension cocycle as a ‘gauge,’ without commenting that in the same context he introduced
the ‘infinitesimal rotations’ as an alternative explanation, giving the reader a choice. I see
now, looking again at his book, that he really interprets the action as a differential action on
du and dv leaving it unexplained only why there should be such an infinitesimal action, or
what du and dv ought to represent.
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So far we have only analyzed the variety defined by the
equation r = 0 within the quadric hypersurface Q de-
fined by the rule x2 + y2 + z2 = r2. If we blow up the
origin here to obtain a smooth variety Q̃, the excep-
tional divisor E ⊂ Q̃ is an algebraic surface containing
the Severi-Brauer variety P . If we complexify the inclu-
sion P → E we obtain a copy of the diagonal inclusion
P1 → P1 × P1, but the identification of a decomposi-
tion of the complexification of E as a cartesian product
P1 × P1 is not natural, and there is no natural pair of
projections to P1.

An interesting point also is that the real points of the
exceptional divisor E ∼= P1 × P1 in the resolution Q̃ of
the ordinary double point three-fold Q comprise a copy
of the two-sphere S2, it is the real projective variety de-
fined by the homogeneous equation x2 + y2 + z2 = r2;
and the map to the real projective plane by the coordi-
nates x, y, z is an unbranched topological double-cover.
This is because the branching locus is exactly the Severi-
Brauer variety P with no real-rational points. The real
points of the full Q̃ can be viewed as the disjoint union
of all oriented real lines through the origin in R3, and
forgetting the orientation gives a map Q̃→ Bl{0}R3, the
blowup of R3 at the origin, which is the disjoint union of
the real lines through the origin without any orientation
being remembered.
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While the topological structure on the double covering
of the sphere is that of a covering space, with freely-
acting covering group, the scheme structure includes a
fixed subscheme, this is a scheme theoretic branching di-
visor, and it is by contracting two-forms along the Euler
derivation of the line bundle and then restricting to the
Severi-Brauer variety that we will be able to realize the
restriction of the Legendre operator on harmonic func-
tions as a Weyl lowering operator.

The normal bundle of P in E is yet another copy of the
cotangent bundle of P, and so Q̃ contains two copies of
Ṽ which intersect along P. One of the two is the divisor
of poles of the now rational function r.

If we pull-back the line bundleOP2(−1) along the branched
double-cover, the result is what is known asOP1×P1(−1,−1).
That is, it is dual of the line bundle with section sheaf
which includes one section crossing the zero section P1×
P1 at the union of two coordinate lines P1×{p}∪{q}×P1,
for points p, q ∈ P1. Note that the projectivication of
the space of dual sections is two-dimensional; yet this
description is not natural and there is not a natural de-
composition of E as a cartesian product P1 × P1.

The restriction of this pulling back to P1 = P ⊂ E
where P occurs as the diagonal under any choice of de-
composition, naturally, gives the bundle OP1(−2). The
pulling back is an isomorphism on the zero section.

The restriction (=pullback) of the threefold branched
double covering Q̃ → Bl{0} C3 along the inclusion of
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the quadric curve P1 → P2 is the branch locus of the
branched cover.

Bl{0} C2 = OP1(−1)
↓

Ṽ ∼= OP1(−2) → OP1×P1(−1,−1) ∼= Q̃
↓ = ↓

OP1(−2) → OP2(−1) = Bl{0} C3

↓ ↓
P1 → P2

We have then made an additional branched cover in the
upper left vertical map.

The right vertical map is the bundle map induced by
pulling back along the branched double covering P1 ×
P1 → P2, and pullback (=restriction) along the inclusion
of the diagonal P1 is the identity.

The main square in this diagram expresses a branched
double covering of the three-fold Q̃ over Bl{0} C3 with

branch locus Ṽ .

The vertical maps on the left (of which one can be con-
sidered to be the identity when the three fold branched
cover is restricted to its own branch locus), are both
constant on the base P1 and the top map shown is the
two sheeted line bundle map induced by tensor square
on each line fiber.

Thus, the right vertical map is essentially constant on
fibers while the left vertical map is constant on the base.
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It is interesting that the restriction of the right vertical
map to exceptional divisors P1×P1 → P2 ⊂ Bl0C3, in its
action on real points, is a copy of the topological double
covering of the real projective plane, while the constant
P1 in any term of either left vertical map is the Severi-
Brauer variety, whose complex points are a second way
of finding a double covering of the real projective plane,
this time in the map from complex points to irreducible
coherent sheaves on the real Severi-Brauer variety.

The variety Q̃ can be constructed in coordinates as fol-
lows: if we consider u2 and v2 just to be a pair of in-
dependent coordinates, complement of the exceptional
divisor are the nonzero points of the affine variety de-
fined by the equation u2v2 = (r − z)(r + z) while the
exceptional divisor is the projective variety given by
the same equation, interpreted as being homogeneous
in u2, v2, z, r. Thus the exceptional divisor in Q̃ decom-
poses non-naturally as a cartesian product of two pro-
jective lines P1 × P1 which can be considered to have
homogeneous coordinates [u2 : z + r] and [u2 : z − r]
respectively. The Galois action which negates r induces
the action on the exceptional divisor which interchanges
these two projective line factors in the cartesian prod-
uct.
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The identifications of Bl{0} C2 and Bl{0} C3 with line
bundles are not natural. The map Bl{0} C2 → Bl{0} C3

does descend to a map C2 → C3 which is described by
the equations a few pages earlier, expressing x, y, z as
homogeneous complex polynomials in u, v. But the iden-
tifications with line bundles in the diagram just above
are not natural. Let us explain this.

Often the symbol O(−1) is taken to mean the actual
bundle of lines through the origin in the plane C2. As-
sociated to U ⊂ P2 the set Γ(U,O(−1)) is the ways of
analytically choosing a point in each line L ∈ U. And
if one actually chooses a point p ∈ P1, then O(−p) is
isomorphic to O(−1).

The abuse of notation is substantial. If point p is re-
placed by a different point q, there is no natural way to
choose an isomorphism O(−p) → O(−q), and there is
no such functor as O(−)(−1) from copies of the Riemann
sphere to coherent sheaves.

It is indeed correct to think of the Riemann sphere as
the sphere of angles in three dimensional space, indpen-
dently of any choice of Riemannian geometry. But if we
want to make the description of the Riemann sphere as
a bundle of lines become natural, we must reduce each
line in the line bundle modulo the action of a rotation
by π radians
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The reduction map is the identity on the Riemann sphere,
and is a branched cover of order two, which branches
along the Riemann sphere. The map is the natural map
from a line bundle to its tensor product square, and
on the fiber vector spaces V, which are one dimensional
vector spaces, the map is the natural map V → V ⊗ V
under which a tensor (all are indecomposable) v is sent
to v ⊗ v. The Galois group of the branched covering is
just the action of −1 on the line fibers.
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If we really think that the Riemann sphere is meant
to be the sphere of angles at a point of three dimen-
sional space, then each point naturally has an oppo-
site, and the map sending each point to its opposite
is anti-holomorphic, rather than holomorphic. Rather
than trying to extend this anti-holomorphic map to the
line bundle O(−1) – or what would be more correctly
called O(−p) for some point of the Riemann sphere, it
makes more sense to recognize that O(−2) does make
sense, that the connected conformal group of automor-
phisms of the sphere does act upon it in a natural way,
and also that this has a natural two-sheeted branched
cover. The group which acts naturally on the branched
cover arises naturally too, But there is no natural vector
space around which we might call C2.
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Just as the Riemann sphere inside any O(−p) can be
contracted to a point, resulting in a copy of C2, the Rie-
mann sphere inside the natural surface O(−2) can be
contracted to a point, resulting a surface with an or-
dinary double point. The coordinate ring of this affine
surface can be represented as the subring of the poly-
nomial algebra C[u, v] in two variables u, v which con-
sists of polynomials whose degree is even (the invari-
ants of the cyclic group of order two which negates u
and v). Recall that the defining equation of the affine
variety Q is u2v2 = r2 − z2 where we have written
u2 = x + iy, v2 = x − iy. The equations we already
have seen

x =
u2 + v2

2

y =
u2 − v2

2i

z =
1

i
uv.

can then be deduced by setting r = 0.

Here x, y look like the real and imaginary parts of a
complex number x + iy, but at this time that is not
what they are, all of u, v, x, y, z are complex coordinates.
This gives a presentation of the subring generated by
u2, uv, v2 as the algebra

C[x, y, z]/(x2 + y2 + z2).
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Now it is time to discuss the principal parts bundle. In
the development of the theory of things like the deRham
differentials, it was a nice simplification to be able to
write dx separate from an expression like dx/dt for the
differential of a variable x, say, in terms of time t. Sheaf
theoretically, if S is a complex manifold, then the first
deRham differential has a rigorous definition, for exam-
ple as a derivation OS → ΩS from the structure sheaf
to the Kahler differentials. Instead of needing to talk
about derivations OS → F for another coherent sheaf
F we can just talk about linear maps ΩS → F . When
F = OS then any vector field δ has its contracting map
iδ : ΩS → OS so that δ = iδ ◦ d, and the correspondence
is bi-unique.

Really, when a person writes dx, they almost always
really mean x+dx, thinking that a quantity x is already
there, and will be changed slightly. So that one could
have made a map

OS → OS ⊕ ΩS

which on local sections is given x 7→ x + dx. There was
no need to do this because we knew what x is already,
and so understanding dx already implies understanding
x+ dx. But when we use dx we usually think of it as an
initial part of an indeterminate or universal power series

x+ dx+ ....

of which we’ve only written the first two terms.
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When x is a function defined on say an open subset of S,
there is no problem. This is because the structure sheaf
of S has a natural connection. But if I only know that x
is a section of some trivial line bundle, then it no longer
is true that I can separate out the two parts in the sum
x+ dx.

Just like the deRham differential is something universal,
which can be converted into the value of a derivative,
once a linear map ΩS → F of coherent sheaves is given,
there is also a very nice coherent sheaf which actually
represents connections. So our writing ∇x for the first
principal part of x does not contradict the use of the
symbol ∇x to mean that we’ve applied a connection ∇
to a section x of a vector bundle. Here we have applied
what might be called the ‘universal connection.’

If x is a section of a coherent sheaf F on an open set U
then ∇x is a section of what is called P(F) on the same
open set. There is the universal connection

∇ : F → P(F)

and just as in the case of differentials, there is a bijection
between actual connections

F → ΩS ⊗F

and coherent sheaf maps

P(F)→ ΩS ⊗F

whose composite with a natural inclusion

ΩS ⊗F → P(F)
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happens to be the identity.

In the case of the surface O(−1), viewed as the total
space of a line bundle on the Riemann sphere S, and
recall that this is nothing but the disjoint union of the
lines through the origin in C2, although we are now in-
tentionally disregarding the naturality issue which we
highlighted in the first section(!), the contracting map
O(−1)→ C2 merely contracts the Riemann sphere to a
point (as it should, if we think that points of the Rie-
mann sphere are really only angles), and if we choose
two coordinate functions u, v on C2 then we can com-
pose with the map O(−1)→ C2 to obtain two holomor-
phic functions on O(−1) which are zero on the Riemann
sphere. However, in this description we’ve used the vec-
tor space C2 as a sort of crutch, which we should not
have done.

The issue is, in understanding physical phenomena, to
know what is our actual coordinate system, and what
are our prejudices. It is tempting to say that there ‘is’ a
complexified Euclidean plane somewhere, as a starting
point. But there is not, except historically. When peo-
ple learn mathematical manipulations, such as proofs
in Euclidean geometry, the reason is not to be able to
reproduce those same proofs.
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The functions u, v are linear on the fibers, they are global
sections ofO(1), and the principal parts∇u,∇v of u and
v when viewed as sections of O(1) are really no differ-
ent than the deRham differentials du, dv when u, v are
viewed as coordinate functions on the un-projectivized
space C2 whose projectivication is the Riemann sphere.
If we write X = O(−1) it is also the pullback to S of
ΩX(log S)(−S).

What this means is that automorphisms of O(−1) as
a vector bundle do induce automorphisms of the two-
dimensional vector space spanned by ∇u,∇v.

If we consider just the group SU2 acting on the line bun-
dle O(−1) – the action such that the reduction modulo
the center of the group is an SO3 action on the Riemann
sphere – then it follows that the group extension

1→ SU2 → G→ SU2 → 1

splits, where G is a group of automorphisms of the rank
two principal parts sheaf P(O(1)) on the Riemann sphere.

It is always true that a self-semidirect product like SU2o
SU2 is isomorphic to a cartesian product SU2×SU2, the
isomorphism is

SU2 × SU2 → SU2 o SU2

(g, h) 7→ (gh, h−1).
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Then a less mysterious way of describing the sheaf τ ∗P(O(1))
is as I mentioned before, to think of P(O(1)) as the pull-
back to the zero-section P1 of the sheaf Ω(log P1)(−P1)
of differentials on the surfaceO(−1) with zeroes and log-
arithmic poles on the zero section. If this were pulled
back along the natural projectionO(−1)→ P1 we would
obtain again the whole of Ω(logP1)(−P1) and indeed it
makes more sense to do this, let’s do it. We can think
of the Schroedinger solutions for a single electron (in-
cluding spin) restricted to the sphere r = 1, as simply
a subspace of the space of global differential one-forms
on the line bundle whose section sheaf is O(−1), and
it is those which are invariant under the covering map
O(−1) → O(−2) and restrict to zero as one-forms on
the zero section.

This latter condition can also be removed since every
one form on O(−1) which is global restricts to zero on
the zero section P1.

And so we can embed the Shchroedinger solutions for
the case k = 1 of one electron, restricted to r = 1, as the
space of global one-forms on the surface O(−1) which
are invariant under the cyclic Galois action of order two.

Here is a very easy interpretation.

The space of schroedinger solutions for 1 electron, with-
out ‘spin’ is just like a subring of C[x, y, z, r]/(x2 + y2 +
z2 − r2).
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It is exactly a subring, if you remove the exponential
factors from the radial functions and pass to associated
graded object. And, what subring? The whole ring.

If you set r = 1 you meaningfully then have the coordi-
nate ring of the real unit sphere.

Now, resolving the ordinary double point gives a differ-
ent thing, which we know well. One ‘coordinate chart’
of the resolution has coordinates

(r,
x

r
,
y

r
,
z

r
)

These are just the the radius and the direction cosines
of the angles!

The defining equation is now

r2 = r2((
x

r
)2 + (

y

r
)2 + (

z

r
)2)

and obviously this is just saying that when r is nonzero,
the direction cosines are constrained to describe a point
on the unit sphere.

But when r is zero, they are unconstrained; and this
corresponds to the fact that the total transform of the
singular point meets our coordinate chart at a union of
two irreducible components, an affine three space when
r=0, and an acutal sphere of radius r at each value of r
which is not zero, if we are over the reals.

It is the sphere of angles for each possible radius, and a
three space of unconstrained angles. when the radius is
zero.
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Now, this seems to be a whole description of everything
one can see.

But, what implicitly Weyl does with this whole picture,
of the three space of unconstrained angles when r =
0, and the disjoint union of concentric spheres for all
nonzero values of r, is, to delete this.

The complement, in the resolution, of all this familiar
stuff, is the divisor defined by r = 0.

It seemed like we already saw both what happens when
r = 0 and when r is not zero. But that was talking about
whether r is zero or not zero on a scale of magnitudes
related to the magnitudes of angles.

We were up in a resolution of the ordinary double point,
and never considered yet letting r be zero actually.

Anyway, if we set r = 0 viewing r as a function on
the original variety, we get the whole exceptional divi-
sor, a ruled surface, and also the proper transform of the
variety x2 +y2 +z2 = 0, and these intersect along the ex-
ceptional divisor of the resolution of the singular point,
that exceptional divisor is the Severi- Brauer variety.
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The union of the two is also easy to visualize, it is con-
tained in the line bundle of type (−1,−1) on the ruled
surface, and it comprises the zero section together with
the restriction of the line bundle itself to the diagonal
Riemann sphere. Recall too that the ruled surface is not
naturally isomorphic to a cartesian product of two Rie-
mann spheres, but the diagonal Riemann sphere occurs
naturally.

If we complexify just the proper transform, what we see
is a copy of O(−1), the total space.

One way to visualize the resolution of the ordinary dou-
ble point then, is to think of the coordinate chart of the
resolution which we described as the complexification of
ordinary three-space defined by an analytic radius and
three direction cosines.

Then, to make this relatively compact as a complex
manifold over the ordinary double point, it is necessary
to add a boundary divisor. This divisor could perhaps
not be considered to be a divisor ‘at infinity’ as one
sometimes calls it, but an infinitesimally small divisor.
It has two irreducible components, and the one which
seems detectable by observing frequencies of an atom is
the one which is a copy of the total space of the line
bundle O(−1) over the Riemann sphere, and particu-
larly the global holomorphic differential one forms on
that complex surface.

153



That is, if you set all the radial functions to 0 in the
Schroedinger equation ‘with spin,’ what you are seeing,
as far as the representation theory can detect, is the
global one forms on O(−1), and there is an action of
SU2 × SU2 on this space of global one forms, and all
the character theory and representation theory supports
that the diagonal SU2 is geometrically meaningful.

That diagonal SU2 is the one where the action on one
forms on the complex surface (real four-manifold)O(−1)
is taken to be the functorial one.

Note that in string theory, sometimes in order to include
manifolds of higher dimension, there are questions asked
about what very tiny sizes might be unobservable. Here,
though, quite literally, there are things occurring of size
zero. The notion that everything in existence should
have a ‘size’ according to a Euclidean measure is one
which seems to have been correctly disregarded in renor-
malization theory, and earlier in complex geometry, in
theories of residues, in which integer orders of vanishing
and integer dimensions both occur.

When people use polar coordinates in two dimensions,
it already happens that the new coordinate system is
already a resolution of singularities.
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In three dimensions, using the square root of r as if it
were analytic amounts to choosing to work on a coordi-
nate system which has a singular point. To work analyt-
ically one might choose to resolve the singular point in
the natural way, as one can when there is a minimal res-
olution of singularities. One finds after blowing up that
the variety where the radius is zero has a four sheeted
universal branched cover corresponding to the fact that
the variety defined by the equation that the radius is
zero, but the coordinates are not simultaneously zero,
has a universal etale cover of degree four.

Once one has blown up a point to create a Riemann
sphere of angles, it then may be needed to use conormal
principal parts in order not to lose differential informa-
tion. All of these are things which one might do in set-
ting up coordinates, and doing things this way can, as
we saw, create a smooth family of configuration spaces,
parametrized by the radial coordinate, but now lying on
a line which extends in both the positive and negative
direction, and such that wave forms which correspond to
ground state of an atoms of atomic number k correspond
to particular fiberwise differential k forms.

With respect to the natural Lie algebra action and auto-
morphism group action of the Riemann sphere, the de-
comosition of the space for each k matches the character
formulas which were written down earlier, and here one
has an explicit basis, and explicitly describes the space
of k forms which has that particular character.
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In order for things to be consistent with a Hamiltonian
formulation, in the case of a single electron, one would
need to consider not just closed one forms, but rather, to
consider sections of the pullback to the tangent bundle
of the configuration space of the sheaf of all such one-
forms.

I mentioned that we can consider the k forms we have
written down as non fiberwise k+1 forms, essentially by
appending dr to the ones we have written. If we do that,
then all are closed as fk,n,ldr being a one form in one
variable is the differential of an appropriate indefinite
integral.

If we want the Hamiltonian formulation to apply, one
issue is generalizing the Hamiltonian notion to work for
forms which are of higher degree than just one-forms. A
second issue is that one had needed, in the case of one-
forms, to be sure that one considers not just pullbacks
of closed forms, but rather linear combinations of such
pullbacks with coefficients which were functions on the
tangent bundle of the configuration space.

The choice of a smooth trivialization of the normal bun-
dle of the complexification of Ṽ may not have been nec-
essary. It might make sense to consider, instead of a
family of vector spaces, the variety Q̃ itself, or a vector
bundle over that.

The fact that the coefficient functions of our forms are
constant in the vector space direction means that the
differential forms would extend to a compactification.
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Schroedinger’s choice of solutions

In the next section we’ll talk about the general theory
of residues, and this will explain some of the foregoing.
Let’s interpose here a comment about Schroedinger’s ex-
planation of the Hydrogen spectrum. Recall that the
action of the Laplacian on functions f(r)s for s ho-
mogeneous harmonic of degree l in x, y, z agrees with
( ddr)

2 + 2+2l
r ( ddr), and what we called the ‘Schroedinger

solutions,’ eigenfunctions for α + β/r were particular
functions f which took the form of polynomials times
exponential integrating factors.

If we write f(r) = a0 + a1r+ a2r
2... it is easy to see just

by considering the radius of convergence that for any
choice of α, β whatsoever once a0, a1 are chosen there is
a unique choice of a2, a3, .... which describes an entire an-
alytic function f(r) so that ∆(f(r)s) = (α+ β/r)f(r)s.

The necessity of the relation α = β2

4n2 which was needed
so that the polynomial factor of f exists and does not
have terms of negative degree, is not required for an
entire analytic solutions; it is rather an artefact of our
insistence of being able to factorize f as a product of a
polynomial times an exponential integrating factor, so
that the real values of f would tend to zero at infinity
(so the L2 norm can be finite, for example).
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Without a physical reason such as this why such a fac-
torization is preferred in nature, then the relation in-
volving reciprocal squares would not actually be a con-
sequence of Schroedinger’s equation, and in any case
the Schroedinger equation would only explain the occur-
rence of differences of reciprocal squares in the Hydrogen
spectrum in conjunction with an appeal to something
such as an L2 structure.

These condsiderations may relate to why it had been
possible, elsewhere in this document, for us to find an
ab initio statistical method of altering the effect of the
the perturbation coefficient for electrostatic repulsion
in its effect on all but the sums of reciprocal squares.
The direct application of the perturbation method in-
correctly decreased the effect of the sums of recipro-
cal squares; and a linear combination of the two effects
which minimizes second differences when all else is kept
constant agrees with what is found by experiment. But
one should ask why it should. One should seek the rea-
son that the two effects are not independent, but are
statistically connected in that way in nature.
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Residues

The fact that the global one-forms on O(−1) come from
pulling back principal parts of O(1) on the Riemann
sphere means that the principal parts exact sequence
for OP1(1)

0→ O(−1)→ O⊕O → O(1)→ 0.

has a meaning. The middle term can be interpreted
as the abstract coherent sheaf restriction to the zero
section of the sheaf of one-forms, on the line bundle
whose section sheaf is O(−1), which restrict to zero as
local one-forms on P1.

The concept of residues amounts to understanding a
comment in Reid’s ‘young person’s guide to canonical
singularities,’ about the way that there is more than
one way pull back a sheaf. The map of pulling back
global sections of the locally free sheaf Ω of one forms
on the line bundle to one-forms on the zero section P1 is
the zero map, just because there are no nonzero global
one forms on the zero section; but when consider instead
the locally free subsheaf Ω(log P1)(−P1) ⊂ Ω it is helpful
now to analyze the process of pulling back as one-forms
in two steps. We may first pull back the sheaf itself to
obtain a locally free sheaf on P1. If i is the inclusion
of the zero section P1 then we obtain i∗Ω(log P1)(−P1)
which is exactly P(O(1)) ∼= O ⊕O.
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And the restriction map is exactly the map to O(1)
shown above. We can consider O(1) to contain O as a
subsheaf, but not naturally; to consider it that way re-
quires choosing a global section of O(1). But if we were
to make such an identification, it would seem perhaps
paradoxical that the restriction of a subsheaf of one-
forms results in a larger sheaf of restricted one-forms.
The paradox would be a result of confusion about func-
toriality. The restriction is functorial and the passage
to a subsheaf is functorial, but as we pass to smaller
locally free subhseaves of Ω, their restrictions as locally
free sheaves, while increasingly positive, are not natu-
rally nested in the positive direction.

If we twist the sequence here by an integer – it will be
best in context to use an even number 2l for l an arbi-
trary natural number – then our exact sequence 0 →
O(2l − 1) → O(2l) ⊕ O(2l) → O(2l + 1) → 0 in-
duces a filtration of the global sections of O(2l)⊕O(2l)
into two parts. This corresponds to the surjection of
S2l(V ) ⊗ V → S2l+1(V ) and its kernel, with V a two-
dimensional abstract vector space, and note that the as-
sociated graded space describes exactly the same decom-
position which in characters is described by the Clebsch-
Gordan formula.

Thus, one reason the calculations above seemed to have
matched the periodic table to some extent, and spectra,
might be because these things could be detected by a
residue calculation.
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The canonical divisor and the j quantum num-
ber.

The exact sequence above, and its positive twists, give a
geometric representation explanation of the same Clebsch-
Gordan rule which said for characters upon setting S =
L = J in the character e1(S)e2l(L) to get

e1(J)e2l(J) = e2l−1(J) + e2l+1(J).

The left side of that rule is the character of the global
sections of the middle term of the exact sequence

0→ O(2l − 1)→ O(2l)⊕O(2l)→ O(2l + 1)→ 0.

and the two terms on the right side are the characters
of the leftmost and rightmost terms, all for the action
of SU2 by line bundle isomorphisms.

The direct sum of the twisted sheaves of the middle term
comprise the pushforwards to the exceptional P1 of

ΩṼ (log P1)(−P1).

That is, of the one-forms on Ṽ which restrict as one-
forms to zero on the zero section P1.
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That direct sum is the middle term of what would result
if we twisted this exact sequence by −P1 and in fact
this sequence twisted by −P1 and pushed down to P1 is
exactly the same as the direct sum of all the sequences
we’ve just described.

0→ Λ2ΩṼ (log P1)→ Λ1ΩṼ (log P1)→ OP1 → 0.

Note that the difference between the quantum numbers
(l+ 1/2)− (l− 1/2) which are usually associated to the
two terms of the filtration can be understood naturally
as exactly half the degree of the canonical divisor.

All of this occurs after we’ve restricted forms on Q̃ to
Ṽ . Forms on Q̃ which are zero as forms on the excep-
tional P1× P1 can be interpreted as forms on C3. Start-
ing from a volume form w(x, y, z)dxdydz we might ap-
ply the adjoint d∗ of the deRham operator to obtain
∂w
∂xdydz−

∂w
∂y dxdz+ ∂w

∂z dxdy. The Euler contraction along
the radial vector field then restricts to a one-form on our
subvariety defined by x2 + y2 + z2 = 0. This restricted
one form has components in the various global sections
spaces we’ve just considered.
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The issue is that the differential of our two-form on Ṽ
is the Laplacian of w times the volume form dxdydz.
If w is homogeneous of degree l and we write it as
w(x, y, z) = rlw(xr ,

y
r ,

z
r) then the action of the Lapla-

cian on the product has as eigenfunctions the sum of the
eigenfunctions of its action on the factors. The action
on rl is by l(l+1)

r2 and our correction to the equation to
cause the fine structure in the spectrum, which we have
only ever so far carried after restricting, was to replace
the eigenfunction for the action on the radial component
to (l+1/2)(l+3/2)

r2 on the image term in the exact sequence,

and to (l−1/2)(l+1/2)
r2 on the kernel term.

Note that this is different than saying “Fermions are
anticommutative,” and I’d like to comment on that too.

When one looks at something like the Riemann spere, if
one fixes any point, then the complement of that point
has a natural structure of affine space, with the automor-
phisms of the Riemann sphere inducing the affine group.
This includes addition and multiplication, or, what we
consider to be addition and multiplication. But a per-
son choosing a different point would find a very different
notion of addition or multiplication.
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The notion that wave functions of Fermions ‘are’ an-
ticommutative seems to presume that instead of us all
living in some geometry, or something we might think of
as a geometry, or a topological space, or another mathe-
matical object like that, we are living inside an algebra,
with a deified calculus of addition and multiplication
somehow.

The reason this is at least for me hard to visualize is
that things like algebra were introduced as operations,
not as ‘things.’ There is no reason not to think that we
live in a universe comprised of inherent ‘operations’ like
addition and multiplication.

But, the place these operations arose in quantum theory
was something nicer, it had to do with only recognizing
that certain things, the way we defined them, necessar-
ily are indistinguishable. The notion that there is an
operation, and it just happens to be noncommutative,
is hard to understand as an observation, and easier to
understand as a postulate only.

The purpose of this section is to bring a closer conver-
gence between the global analysis of harmonic functions
by Legendre using real analysis versus the local analy-
sis of the azimuthal parts using complex representation
theory by Weyl.

We will see that the concept of the canonical divisor of
an ordinary double point singularity enters the picture,
and is related to the classical notion of a dyadic ‘angular
momentum operator.’
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The goal is a single equation generalizing the combina-
tion of the Schroedinger equation with the extra term
that is supposed to explain spin-momentum coupling
into a single local equation with a sensible global gener-
alization.

I have already mentioned that the approach requires
a slight change to the ‘spin-momentum’ term, and the
conceptual setting requires also a different constant co-
efficient also. The first has the effect of shifting the
spectrum in the coarse structure an amount commen-
surable with the fine structure, and could be neither
supported nor contradicted by any existing experiments
that I know of, and the second in a few examples does
seem supported by experimental evidence.

Let’s again review with the construction of homogeneous
harmonic polynomials by Legendre. There one admits
the relation in three space with coordinates x, y, z and
a radial coordinate r that r2 = x2 + y2 + z2, but one
considers the operator ∂

∂z which does not preserve that
relation. For a number l, beginning with the function

(z2 − r2)l

one chooses a number a = 0, 1, 2, ..., l and constructs a
basis of the homogenous harmonic polynomials in x, y, z
consisting of the real and imaginary parts of

(x+ iy)a
∂

∂z

l+a

(z2 − r2)l.

If we complexify, thinking of x, y, z, r as complex vari-
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ables, then we may write

z2 − r2 = x2 + y2 = (x− iy)(x+ iy)

and the expression above is

(x+ iy)a
∂

∂z

l+a

((x+ iy)l(x− iy)l).

Since ∂
∂z commutes with multiplication by x+ iy this is

just

((x+ iy)
∂

∂z
)l+a)(x− iy)l

= δl+a(x− iy)l

where

δ = (x+ iy)
∂

∂z
.

It follows that we can combine l and a into a single value
m, that is, for any numbers m and l whatsoever we have

δm(x− iy)l

has harmonic real and imaginary parts. This is true be-
cause the real and imaginary parts of the anti-holomorphic
function (x − iy)l are harmonic, and δ commutes with
the Laplacian (its real and imaginary parts are in the
rotation Lie algebra as we’ll see in a few lines).
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As we mentioned earlier, derivation δ satisfies

(x+ iy)(x− iy) = r2 − z2 7→ −2(x+ iy)z

and so

δ(x− iy) = −2z.
δ(x+ iy) = 0
δ(z) = (x+ iy),
giving

δ(x) = −z
δ(y) = −iz
δ(z) = (x+ iy).

This calculates δ then

δ = (x
∂

∂z
− z ∂

∂x
) + i(y

∂

∂z
− z ∂

∂y
).

The real and imaginary parts happen to belong to the
Lie algebra of rotations of Euclidean (x, y, z)-space.

Let’s factorize this operator into three parts, in order
to clarify the relation between the canonical reflexive
sheaf of a singular point and the classical dyadic angular
momentum operator.
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We saw already that if we use the finite map given by

u2 = x+ iy, uv = iz, v2 = x− iy
then the purely imaginary operator −iδ agrees with the
lowering operator u∂/∂v in its action on on homoge-
neous complex polynomials of even degree in (u, v)

v2 7→ 2uv 7→ 2u2 7→ 0.

The polynomials of even degree in u, v can be consid-
ered the affine coordinate algebra of an ordinary double
point singularity, and this is the subvariety of the com-
plexification of the affine quadric defined by the equation
x2 + y2 + z2 = r2 defined by the equation r = 0.

The operator δ preserves the whole affine quadric; it is a
lifting of the Legendre operator (x+iy) ∂

∂z to the quadric.

We can verify that it acts by zero on r because of how
it was constructed, or directly, as

2rδ(r)δ(r2) = δ(x2 + y2 + z2)

= 2xδ(x) + 2yδ(y) + 2zδ(z)

= 2x(−z) + 2y(−iz) + 2z(x+ iy) = 0.

and r is a non-zero-divisor in the coordinate ring.

We can relate δ both with the so-called ‘dyadic’ angu-
lar momentum operator of earlier quantum physics, and
with the euler derivation in (x, y, z) space, and also with
the canonical sheaf of the Severi-Brauer variety defined
by x2 + y2 + z2 = 0.
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Denote by ε the Euler derivation

ε = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
.

The contracting operator iε gives an exact sequence

0→ Λ3ΩR3 → Λ2ΩR3 → ΩR3 → OR3 → 0.

The map from two-forms to one-forms acting on the gen-
eral two-form fdydz − gdxdz + hdxdy gives

iε(fdydz − gdxdz + hdxdy) = f(ydz − zdy)− g(xdz − zdx) + h(xdy − ydx)

= (zg − yh)dx+ (xh− zf)dy + (yf − xg)dz.

In the special case when there is one function u with

f =
∂

∂x
u

g =
∂

∂y
u

h =
∂

∂z
u

we have
iε(fdydz − gdxdz + hdxdy) =

(z
∂

∂y
−y ∂

∂z
)(u)dx−(z

∂

∂x
−x ∂

∂z
)(u)dy+(y

∂

∂x
−x ∂

∂y
)(u)dz
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The coefficients of dx, dy, dz are exactly the three com-
ponents of the so-called ‘dyadic’ angular momentum op-
erator applied to u, and so we see that contracting the
two-form dual to a vector field along the Euler deriva-
tion corresponds to applying the older angular momen-
tum operator to a function whose gradient is that vector
field, if there is such a function. In that sense, contract-
ing along the Euler derivation is a generalization of the
older ‘dyadic’ operator.

The differential one-form shown above is a pullback from
a one-form on a two sphere of any desired radius, along
the projection of three space with the origin deleted to
a sphere.

If we let τ = ∂/∂y − i∂/∂x then it follows that

δ(u) = iε iτ(fdydz − gdxdz + hdxdy)

= iδ iτ ∇(u)
,

that is, the operator δ which restricts to the Weyl oper-
ator is the composite of three parts: the gradient oper-
ator ∇ sending u to a two-form, then contracting along
τ and finally contracting along the generalized angular
momentum operator ε.

The Weyl lowering operator, as I’ve mentioned too many
times, is the restriction of −iδ in its action on the com-
plixivication to the level r = 0. That is, it is the action of
δ on the Severei-Brauer variety defined by the equation
x2 + y2 + z2 = 0.
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Varying r from the level r = 1 to the level r = 0 we
could find a deformation between the unit sphere and
the Severi-Brauer variety, but it is not this deformation
which will relate the Legendre operator and the Weyl
operator conceptually, as there is no special significance
which we can give to the radial value of 1.

While most of this analysis makes sense if we use only
real numbers, the Severi-Brauer variety although it has
no real rational points, it occurs within the exceptional
divisor of the minimal resolution of the afffine quadric
threefold hypersurface defined by x2+y2+z2 = r2, where
the whole exceptional divisor is the projective variety
defined by the same equation. The inverse image of the
affine threefold in the transform of (x, y, z, r) space has
one affine open set with coordinates (r, x/r, y/r, z/r) and
defining equation

r2 = r2(
x

r

2
+
y

r

2
+
z

r

2
)

and so is a union of two irreducible parts, defined in
these coordinates by the equations

r2 = 0

1 =
x

r

2
+
y

r

2
+
z

r

2
.
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The first equation defines a linear space of dimension
three, where we consider that the ratios x

r ,
y
r ,

z
r are un-

constrained when r = 0, and the second defines what is
in the real points a cartesian product of a two dimen-
sional sphere with a line of unconstrained values of r.
This cartesian factor of the unit sphere does not depend
on choosing a finite radius of 1 in the Euclidean space,
it is a very nice occurrence of a sphere of angles in the
exceptional divisor. The two affine varieties intersect at
a copy of the unit sphere.

This unit sphere is the intersection of the exceptional di-
visor in the four dimensional transform of real (r, x, y, z)
space with an open affine subset of the proper transform
of the threefold quadric. That is, the copy of the unit
sphere the exceptional part of an open affine subset of
the minimal resolution of the threefold quadric. And
this open affine subset has as its real points the carte-
sian product of a two dimensional sphere with a line.

Note that the complexification of this unit two-sphere is
a copy of P2×P2 with the diagonal subvariety deleted.

The whole of the minimal resolution of the affine quadric
three-fold is compact, and it results by adjoining at the
boundary of the affine open subset we are looking at a
copy of the Severi-Brauer variety described as a projec-
tive variety by the equation x2 + y2 + z2 = 0 or equiva-
lently if we want to use coordinates (x/r, y/r, z/r) pro-
jectively, we could write it (x/r)2 + (y/r)2 + (z/r)2 = 0.
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One sometimes visualizes a boundary in a compactifi-
cation as being ‘at infinity,’ but it makes more sense
intuitively to think of this Severi-Brauer subvariety of
the minimal resolution as occurring ‘at zero,’ because
it is the intersection of the exceptional divisor in the
minimal resolution of the affine threefold quadric with
the proper transform proper transform of the subvariety
defined algebraically by the equation r = 0 in the unre-
solved threefold quadric. That is, it is the exceptional
divisor in the minimal resolution of a twofold quadric.

Then, rather than comparing the restriction of iδ to the
subvarieties of the affine quadric defined by the equa-
tions r = 1 and r = 0, we should consider instead lifting
iδ to the minimal resolution. This preserves the excep-
tional divisor by naturality, and it must preserve the
proper transform of the variety defined by r = 0, and
so it must act on the Riemann sphere which is the com-
plexification of the Severi-Brauer variety.

In coordinates x
r ,

y
r ,

z
r we have the action on the un-

projectivized vector space

δ(
x

r
) = −z

r

δ(
y

r
) = −iz

r

δ(
z

r
) =

x

r
+ i

y

r
.
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Or, switching coordinates, and taking account of the re-
lation x2+y2+z2 = 0, we can say that u ∂

∂v acts on C2 and
the three-dimensional vector space of global vector fields
on the Riemann sphere is spanned by u ∂

∂u , u
∂
∂v , v

∂
∂u , v

∂
∂v

with the relattion that 0 = u∂/∂u+ v∂/∂v.

Thus δ induces a ‘parabolic flow’ fixing one point of
the Riemann sphere; and if we think of this as a point
at infinity, we can identify iδ with a translation of the
Euclidean plane.

The variety defined by the equation x2 + y2 + z2 = r2

is a branched double cover of three-space (obtained by
adjoining a square root of x2 +y2 + z2) and when we are
away from the region where r = 0 we can work instead
on ordinary three-space.

Then a smooth function u is harmonic if and only if the
corresponding two-form form τ is closed, and in this way
we see that the smooth harmonic (=exact and co-exact)
two-forms on R3 are bijective with the smooth harmonic
functions.

This is true locally, and therefore remains true, away
from the locus where r = 0, on the two-sheeted branched
cover (which is an ordinary two sheeted cover away from
r = 0), in the sense that the sheaf of co-exact smooth
two-forms is isomorphic to the sheaf of smooth func-
tions, and the sheaf of harmonic two-forms corresponds
to the sheaf of harmonic functions.

174



The one-forms dx, dy, dz restrict not to one-forms on the
Rieman sphere which is the projective variety defined by
the equation x

r
2+ y

r
2+ z

r
2 = 0. Rather they restrict to first

principal parts of the conormal sheaf, so global sections
of P(O(2)) on the Riemann sphere.

The whole proper transform of the variety defined by
r = 0 is a copy of the cotangent bundle of the Riemann
sphere, and the pullback of the first principal parts sheaf
along the cotangent bundle projection is a subsheaf of
the cotangent sheaf of that line bundle. (That is, a
subsheaf of the cotangent sheaf of the cotangent bundle
of the Riemann sphere). It is the sheaf of one-forms
on the cotangent bundle which map to zero in the push
forwards of the cotangent sheaf of the zero section.

Therefore it is simpler to think of dx, dy, dz as global one
forms on the cotangent bundle of the Riemann sphere.
The map which contracts the zero section of that cotan-
gent bundle to one point is the map to the variety whose
coordinate ring is the even total degree polynomials in
C[u, v], and dx, dy, dz are pullbacks of one forms on
affine space in coordinates u, v, we can find these one-
forms by remembering the relation we wrote earlier ex-
pressing x, y, z in terms of u, v. This gives

Note though that the relation between the Legendre
and Weyl operators cannot be considered to result from
merely restricting the one-forms dx, dy, dz to the Rie-
mann sphere, as, although that restriction is well-defined,
it is zero.
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Rather, the meaningul relation will require considering
meromorphic forms with nontrivial poles, and it is a
matter of comparing the action of the Legendre operator
on forms with the Weyl operator on the residues of those
forms.

Of the affine variety x2 + y2 + z2 = 0, even if we do
not pass to its minimal resolution, we may describe the
‘canoncacal sheaf’ or what is in this case the ‘canonical
module’ to be the free module over the coordinate ring
spanned by the element

ω =
1

x
dydz = −1

y
dxdz =

1

z
dxdy.

This is a basis element for the reflexivication of the mod-
ule of two-forms, and an interesting property that this
has is that if we restrict a co-exact two-form

τ = adydz − bdxdz + cdxdy

on R3 to this subvariety, the co-exactness together with
the formula for ω implies that the result is

2ε(ψ)ω

where ψ is the smooth function corresponding to τ, and
ε is the Euler derivation x∂/∂x+ y∂/∂y + z∂/∂z.
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Intuitive description of polarization

If you think about defining ocean waves by differential
equations, you can say perhaps there is some solution
and just keep in mind the equation itself, which has all
this symmetry.

Or you can say, I want to see what the actual waves look
like now

Now, an obvious group theory lemma is this: if you
define a ‘polarization’ to be a choice of a maximal torus
and a fundamental system of positive roots, then this
can actually corresponds to something physical in the
Schroedinger equation solution space.

Recall that there actually is a finite-dimensional vector
space of solutions associated to what is labelled an ‘elec-
tron configuration,’ and these are actually full solutions
of the correct Schroedinger equation – there is not tech-
nology in PDE’s or numerical analysis to write these
down, but they are there.

These are alternating forms, and up to isomorphism as
a vector space it is just, if the ‘electron configuration’ is
a configuration of k electrons, it is as a vector space the
k’th exterior power of the space of solutions for a single
electron
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Such a thing actually corresponds to a solution space
of the Schroedinger equation, and this remains true re-
gardless of whether we include electron-to-electron re-
pulsion, or whether we include the little operators near
the identity as coefficients of the potential terms kpe

2/ri.
Because there is the perturbation which we can apply to
move this solution uniquely into place, and we can even
know its first derivative, so we know which schroedinger
equation it is a solution to, in the sense that the constant
term E of the eigenvalue, we know the constant and lin-
ear terms of it in terms of a perturbation or deformation
parameter.

Although there is not one wavefunction for each polar-
ization, once you index things by ‘electron configura-
tions,’ and choose an electron configuration (also in the
rare cases when one term symbol can occur with multi-
plicities, choose just one term symbol) then up to am-
guities only of a complex phase and magnitude, there is
exactly one wave function that ‘has’ each polarization.

For these wave functions there is a possibility to have
one’s cake and eat it too. To have a fixed image of a
standing wave, which has a variable complex coefficient.
And choosing that coefficient really does describe what
the field is ‘now’ at each point of space. That is, it
determines a particular complex alternating form, up to
an undefined coefficient.
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Among general wave functions, they are just a special
type, and while they cannot represent every energy level
that can occur, and we might think of them as analagous
to when planets go in planar orbits separately.

A polarization can be interpreted in a very easy way. For
instance if one thinks of one atom as being just a set of
electrons, and includes both ordinary and infinitesimal
components of wave functions. For an atom with,say,
three electrons, one can visualize three ordinary spheres,
like three globes, and each having a very tiny sphere
inside it.

Then a polarization just means marking each large sphere
by one point, and marking each small sphere by one
point. One can do this by placing a large ‘vector’ and a
small ‘vector’ whose tail is at each electron, not caring
exactly how large or small they are.

Then the space of wave functions does decompose into
Fourier components, for the action of the subgroup which
has a copy of SO3 × SU2 for each orbital. The compo-
nents are indexed by a choice a sequence assigning one
term symbol for each orbital – these are the same term
symbols one would assign to the ground state of an atom
itself if it had only that orbital as its last unfilled or-
bital – and each irreducible component so indexed has a
wave function that ‘has’ that polarization, unique up to
a choice of complex phase (including magnitude and an-
gle). But these components are large-dimensional com-
ponents are not related to energy levels.
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If one begins to think the electrons are more coalesced
together, then one uses this smaller symmetry group.
When they are all considered coalesced, now it is just a
single large sphere and a single small sphere. Or, choos-
ing just one large vector and one small vector. The
space of polarizations is now a cartesian product of two
spheres. And again there is a unique wave function, up
to complex phase and magnitude, which ‘has’ each po-
larization, within each Fourier component. And now,
what was not true before is true, at least coarsely. All
the wave functions in each Fourier component have the
same, what is known as, coarse, energy level, and this
means that for a polarization in this sense, there really is
a wave function that ‘has’ the chosen polarization and,
at least coarsely, represents each energy level.

Up until cases like an excited configuration of Nitro-
gen or Fluorine the coarse energy level determines the
Fourier component, but this is not true generally, each
Fourier component is allowed to occur more than once,
with more than one coarse energy level, but usually it
only occurs once.

An issue about ‘spin’ is that the symmetry group that
is relevant for the small sphere is not just rotations of
space, but this is because there is no reason for it to be
that, it is symmetries of the residue of the wave function
which is not a wave function in space. But it does not
affect what one means by a polarization, and this detail
can be ignored.

180



Now, if we are even more accurate, we realize that the
two spheres, the large sphere and the small sphere, are
actually not different after all. But, the symmetry group
is not just the spatial symmetry group, if you care about
what you mean by a wave function, including the in-
finitesimal part. It is a symmetry group of a bundle of
lines, and there are two symmetries that correspond to
each one rotation of ordinary space. But it is a double
cover of the ordinary rotation group.

When one realizes that the two spheres are not different
after all, then all a polarization means is a point of a
sphere, or an actual direction in space, as if you are
looking at the atom itself, and the vision determines
one direction into it.

And each Fourier component that corresponded to one
coarse energy level (though more than one coarse en-
ergy level could correspond to a Fourier component) now
splits into parts in a way that is easily understood in
terms of Clebsch Gordan theory.

Again, there is a unique wave function in each of these
smaller Fourier components which ‘has’ each polariza-
tion. And now, because the rotation group (or more
correctly its double cover) really is the actual symmetry
group of the atom, it really is true that there is a po-
larized wave function representing every possible energy
level.
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The reason these are useful is that if one wanted to find
all the energy levels, and did not care about anything
else, at any point of this analysis one can ignore all but
the special wave functions that ‘have’ one chosen polar-
ization.

And then, thinking of distinct Fourier component sub-
spaces as being different, there is a bijection between the
fine energy levels and the special wave functions, defined
up to complex phase and magnitude, which ‘have’ any
one fixed polarization.

So that once a polarization (single point or point of view)
is fixed, each fine energy level really does determine ex-
actly one wave function (up to phase and magnitude)
and vice-versa.

Now, it is not true that every wave function ‘has’ a polar-
ization. That would be like saying every solution of the
n body problem consists of planets in separate planes.

But it is true, once we are down to the smallest rele-
vant symmetry group, that in the multiplicity free case
a polarization and energy level determine a unique wave
function up to a coefficient determining a complex phase
and agnitude.

I think that Feynman was wrong to think that such co-
efficients are just intrinsically undefined, but it has to
do with making a choice about what you want to see.
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Now, For a general type of wave function, even if it is
isotypical in the multiplicity free case, it is not true that
it admits any polarization.

And this is just the assertion that Dirac was tranfixed
by, when he would talk about how operators are gener-
alizations of numbers.

That is, we can visualize it representation-theoretically,
and we can say there simply isn’t one element or line
that has been specified. That was perhaps a mysterious
phenomenon in Dirac’s day, but the notion of ‘operator’
has been replaced by the notion of the rational repre-
sentation theory of Lie groups.

To reiterate, I am not asserting that an electron actually
has such a polarization as this, defined by choosing a
maximal torus and a system of positive weights, or even
that one electron is separate from others in an atom.

Rather, what people say seems to happen is that the
electron seems to actually orbit the nucleus just as the
earth orbits the sun.

Then there might be an argument for adopting as an
analogy, what happens in the n body problem, in the
case of a solar system like the one we happen to live in,
where each planet has an elliptical orbit, and the orbits
are actually in planes, and tilted at various angles.
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The sense in which it is an analogy is one which is a bit
subtle perhaps, it is that we have insisted on global an-
alytic solutions, but these were analytic on a resolution
of singularities only.

About why a polarization in the sense of choosing a long
and short arrow for each electron does not correspond to
‘energy levels,’ this too is sort of obvious. The attempt
to make a mixture of frequencies to describe an atom
is just an analogy to trying to look at something to see
what it is, the eye only perceives frequencies (not differ-
ences of light polarization etc etc), and so one is trying
to take a three dimensional phenomenon and convert
it into a two dimensional phenomenon (or one dimen-
sional depending on how one thinks of ordinary Fourier
series). The eye (vision) loses a lot of information if one
is able to think of waves more generally, and so, oddly,
the wish to find what energy levels are there is just a
wish to filter out the same information that gets filtered
out if you look at anything else, and only see colors, not
anything more interesting, unless you are looking say on
a hot day and seeing mirages and things.
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Relation between the smooth and holomorphic
Laplacian operators

Let’s start with one simple observation about the surface
OP1(−1) which is the disjoint union of the lines in the
plane, over the complex numbers.

That if you have a flow on that surface, a holomorphic
flow, or better, if you look at the sheaf of holomorphic
flows, which are allowed a pole on the exceptional P1,
then you find that the sheaf generated by global sections
is smaller, and only consists of flows which are holomor-
phic on the exceptional P1.

This is obvious because you can think of the complement
of P1 as the complement of the origin in a 2 dimensional
vector space, and there is no such thing as a flow on a
smooth surface which has a pole at one point.

But there is a second way of seeing the same thing, using
Cramer’s rule.

For smooth manifolds, one way of using Cramer’s rule
is this.

That a flow gives an action by Lie derivatives, acting on
differential forms of every degree, and preserving that
degree.
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But if you represent it by linear maps, then the linear
map of coherent sheaves which represents a flow is one
which decreases degree by one. And it sends the natu-
ral canonical sheaf into the n− 1 forms, hence giving a
section of n− 1 forms twisted by the anticanonical divi-
sor. Thus, on any complex surface, whether compact or
not, the one-forms can be naturally identified with flows
tensored with the anticanonical sheaf.

For (compact) projective varieties, with each choice of
canonical divisor these are in turn naturally identified
up to a scalar multiple with the sheaf of flows which
have a simple pole on the canonical divisor. When there
is a natural choice of a canonical divisor, then there is
a natural identification. The question whether there is
a natural canonical divisor is one of the types of things
that eventually gets analyzed in minimal model theory.

The canonical divisor of O(−1) is the exceptional P1,
counted with the ordinary multiplicity +1. Because the
quasiprojective variety O(−1) is not compact, the di-
visor does not naturally determine the canonical sheaf;
we could choose a volume form such as du ∧ dv which
has a simple zero on the exceptional P1 of course; then
contraction against this two-form maps the sheaf of vec-
tor fields with a simple pole on P1 isomorphically to the
sheaf of holomorphic 1 forms on the surface O(−1).

All the global one-forms restrict to zero on the excep-
tional P1 because P1 supports no global one-forms.
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So the fact that no global vector fields on O(−1) have
even a simple pole on the exceptional P1, is the same
statement as that global one forms on O(−1) always
restrict to zero on the exceptional P1.

This notion of vector fields allowed to become infinitely
large on the exceptional P1, and this sheaf having no
global sections when restricted to P1, is reminiscent of
the difficulty about the two interpretations of raising
and lowering operators.

Here, for a single electron, we know that the representa-
tion theoretic classification of spectral lines is very con-
sistent with a notion that they do relate to one forms
on the surface O(−1). We can think of these as being
vector fields, flows, which are allowed a simple pole on
the exceptional P1 if we like, and as far as global sections
the allowed pole is inessential.

If one really wants to go all the way to a Hamiltonian
interpretation, one is required at some time to think of
flows on the tangent bundle; and if I am thinking of flows
on the tangent bundle of the surface O(−1), these are
sections of a four dimensional vector bundle on a four
dimensional manifold, and suddenly we are in complex
dimension 8, real dimension 16.

So let’s not do that, at least not now, probably not ever,
it might have been the wrong interpretation.
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In the case of Helium for instance we have the four man-
ifold which is O(−1,−1) on P1×P1, and if we think now
of 2 dimensional flows, these correspond to maps from
the canonical sheaf into 2 forms, or we could just then
say that they are twisted 2 forms, and again the twisting
is inessential, does not affect global forms.

If you look at what actually happens when you apply
the Laplacian to real functions, you see that it does not
behave well with respect to internal products, but it does
with respect to external tensor products and exterior
products.

That is, for functions f(x, y, z) of the three real vari-
ables, if I have two such functions f, g, then

∆(fg) = f∆(g) + g∆(f) + 2 grad(f) · grad(g)

and this gradient dot product term depends on our met-
ric, as does the definition of the Laplacian in the first
place. But note that if I have functions of variables
(x1, y1, z1, x2, y2, z2) and if I have functions f(x1, y1, z1)
and g(x2, y2, g2) then

∆(fg) = f∆(g) + g∆(f)

with no gradient dot product term (or, the gradients are
perpendicular).
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And if I want to restrict to the diagonal, taking x1 =
x2, y2 = y2, z1 = z2, then what happens? Clearly the
term grad(f) · grad(g) will not matter anyway if I use
an antisymmetric product, and we knew anyway that
the Laplacian will behave well with respect to exterior
products since we already know that it can be inter-
preted as being the deRham differential.

Now we have to be a bit careful, as to interpret the
Laplacian as the DeRham differential we need to be in
a situation where we have, in the three dimensional or-
dinary interpretation, interpreted each function as rep-
resenting its gradient flow, and even more than that, we
need to think of this as being a codimension one differen-
tial form on three space. There is absolutely no difficulty
doing this, representing a function f as meaning

∂f

∂x
dydz − ∂f

∂y
dxdz +

∂f

∂z
dxdy

When we apply the deRham differential d to such a
thing, we are applying the Laplacian to f , we get the
Laplacian of f in the usual three dimensional sense,
times the basis form dxdydz, which we just can inter-
pret as a fixed trivialization of the canonical sheaf of
ordinary three space.

Note that the two-forms of the type above are exactly
the co-closed two-forms.
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If we are a little more rigorous and say we are working
on the variety defined by x2+y2+z2 = r2 then this same
expression represents a two form on that variety too, and
also because we can pull back two forms, it represents
a two form on the smooth variety which resolves that
ordinary three fold double point.

If I talk about tensor or exterior alternating products,
then there are k sets of variables (xi, yi, zi) for i = 1, 2, ..., k,
and then there are codimension k forms on a smooth
manifold, which could also be viewed as a resolution of
singularities, now of a variety with more than isolated
singularities.

This is a manifold of dimension 3k.

When k = 1, the manifold is the total space of the line
bundle isomorphic to O(−1,−1) on the ruled surface
P1 × P1.

And so we have in that case we can interpret the classical
Laplacian as the deRham differential on two forms of
this smooth threefold.

It is very tempting to apply the Euler contraction and
arrive at one forms on the ruled surface, but the issue is
that the full automorphism group of P1 × P1 would act
and there is no evidence for this.
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I am rather sure that the manifold we want to restrict to
is really the restriction of the O(−1,−1) bundle to the
diagonal P1 which is natural here, and the restriction
becomes O(−2) and for some reason we then take the
two sheeted branched cover.

The issue is that in order to restrict, we really need a
transverse vector field.

So here is the real issue where the lowering and raising
operators disconnect, between the Legendre and Weyl
interpretations.

We have got global 2 forms on the total space ofO(−1,−1)
on P1×P1, and we want to restrict to global 1 forms on
the diagonal O(−2) on P1, and, even better if possible
to the double cover.

Now, the normal bundle of the zero section P1 in the zero
section P1 × P1 is O(−2) which has no global sections,
but actually this is totally fine, as we are allowing forms
to be identically zero on the zero section P1 inside the
surface O(−2).

It is notationally confusing as there are two copies of
O(−2) here. One is the manifold we’re trying to re-
strict to, and the other is the normal bundle of just the
exeptional submanifold P1 into the larger exceptional
submanifold P1 × P1.
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Anyway, what we’re looking for at the moment – which
would lead to a way of restricting global 2 forms on the
total space of O(−1,−1) to become global one forms on
the total space of O(−2) – is a transverse vector field to
that surface even if it is zero along the whole P1 inside
the surface.

Clearly though the normal bundle of the total space of
O(−2) in the total space of O(−1,−1) is nothing but
the pullback of the normal bundle of the exceptional P1

inside the exceptional P1 × P1 along the bundle projec-
tion O(−2)→ P1.

The global sections are then the global sections of

O(−2)⊕O(0)⊕O(2)⊕O(4)⊕+.....

on P1. Now there is a natural one dimensional space of
global sections there, it is the second term.

This means, mod mistakes, that up to a complex scalar
there is in fact a unique vector field which is transverse
to the submanifold O(−1) inside O(−1,−1) everywhere
away from the exceptional P1.

So we can apply this contracting vector field, and all
the classical harmonic functions etc, once represented as
holomorphic 2k forms, in the case of k electrons, become
holomorphic k forms, as needed.

Now, how is the complex holomorphic Laplacian related
to the real one?
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The ‘real’ Laplacian is the deRham differential of the
larger manifold, the ‘complex’ one is the deRham differ-
ential of the submanifold.

If we were somehow allowed now to restrict attention
to those differential 2 forms which are invariant for our
transverse flow, then the Cartan equation

iδd+ diδ = δ

where the right side is the Lie derivative, being zero,
would imply that the contraction operator anticommutes
with d, meaning that up to sign we can identify the real
and complex Laplacians, when applied to such functions.

The subvaritety is defined by r = 0, if we let r be the
fourth coordinate on our smooth threefold, and surely
what is happening here is that when we are on the excep-
tional divisor we have to worry about the whole proper
transform of the variety defined by r = 0 in the singu-
lar ordinary threefold double point, but away from the
exceptional divisor we have that the flow ∂/∂r is the
one to use, and so the differential forms that behave so
nicely here, the ones where, if we restrict to those we
can identify the complex Laplacian as only the negation
of the real one, once working on the submanifold, are
those which are invariant under the Lie derivative of the
operation ∂/∂r.
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For forms which are not Lie invariant under that op-
erator, then the relation between the real and complex
Laplacian is more complicated than saying that one is
the negation of the other.
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A coincidence about the periodic table

This section and the next are a little light-hearted, and
may be skipped, as it concerns the Aufbau only.

If we make a small change in the varieties we we looked
at earlier, that is, if we consider adjoining not a square
root, but a fourth root of x2 + y2 + z2, so we have a
homogeneous coordinate ring of a singular variety in
weighted projective space, then a Riemann Roch theo-
rem could relate vanishing of Plucker coordinates (di-
mensions of spaces of wave functions) to dimensions
of global sections of O(i), and the global sections are
nothing but a basis of monomials in x, y, z, a where we
give a half the degree of x, y, z, and include the relation
a4 = x2 + y2 + z2.

Empirically these basis elements happen to match the
even numbered elements in the periodic table, I have just
contrived this coincidence by taking the square root of
what would be the radius, here a2. For example, for Iron,
Fe, I have omitted writing z2 because it can be rewritten
as linear combination of x2 and y2 and the later a4.
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The same monomials in x, y, z as they can be considered
modulo x2 + y2 + z2, correspond to a basis of all the
homogeneous harmonic polynomials of all degrees.

Previous sections implicitly gave some justification for
considering the variety a2 = x2 + y2 + z2, rather than
the one which produces these monomials pictured above.
While introducing a square root of x2 + y2 + z2 had
been necessary even to consider analytic solutions of the
Schroedinger equation, it seems hard to thin of any rea-
son why a further square root would be appropriate.
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We will not discuss this further. A construction which
might have a similar effect would be a second type of
phenomenon like the one which is considered to be elec-
tron spin; there might be an effect from a second conor-
mal sheaf which might explain the doubling of rows in
a different way, more like the way that ‘electron spin’
works.

Note that atomic number of the m’th Alkaline Earth
Metal could have been stated more simply, that for m

even it is the binomial coefficient

(
m+ 3

3

)
and for m

odd, it is the average of the values for the two surround-
ing even values of m.

Although we won’t explain this repetition of periods in
the periodic table (it does also seem to be explained by
the Aufbau, though that is not explained), in the next
section we’ll begin explaining this pattern in a way that
does not require characters, and and attempts never-
theless to decode the exterior products that have empir-
ically seemed to be needed (Pauli exclusion).
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Linear systems of wave forms

When we consider the case of Nitrogen, the space of
wave forms specified by the Aufbau is a 20 dimensional
space of alternating forms, containing for the ground
state a four dimensional irreducible subspace specified
by Hund’s rule.

It is amusing to try to work with less reliance on Pauli
exclusion, the Aufbau, the Hund rules or exterior pow-
ers, and it is possible to convert the space of alternating
wave forms simply into a 20 dimensional linear system.

What we would ordinarily do is to consider the seventh
exterior power of a representation with character

f7,1,0e1(S) + f7,2,0e1(S) + f7,2,1e1(S)e2(L).

The summand with largest sum of reciprocal squares in
the second subscript of the f ’s – or more relevant the one
determined by the Aufbau – is just the fourth exterior
power of the sum of the first two terms times the third
exterior power of the last term. So the ground state
character will correspond to an irreducible component
of

f 2
7,1,0f

2
7,2,0f

3
7,2,1Λ

3(e1(S)e2(L)).
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When we turn to calculating the third exterior power of
the representation with character e1(S)e2(L), a chemist
might notice that it is the third elementary symmetric
polynomial in the set of values

SL−2, S, SL2

S−1L−2, S−1, S−1L2

and would consider that each basic way of choosing three
of these monomials constitutes ‘an electron,’ or ‘an elec-
tron configuration.’ If all the monomials are chosen from
the top row, then one would say there are ‘three elec-
trons which are all spin up,’ and so-on.

Here is finally an example where the character which the
Aufbau produces is reducible, and we would need the
Hund rule to which part represents the ground state.
We have

Λ3(e1(S)e2(L)) = Λ3((S + S−2)e2(L))

= Λ3(Se2(L) + S−1e2(L))

= S3Λ3e2(L) + (S + S−1)e2(L)2 + S−3Λ3e2(L))

.

Here we have used

Λ2e2(L) = Λ1e2(L) = e2(L).

Since Λ3e2(L) = 1 and e2(L)2 = e4(L) + e2(L) + 1 this
simplifies to

S−3 + S−1 + S + S3 + e1(S)(e2(L) + e4(L))

= e3(S) + e1(S)(e2(L) + e4(L))
.

Thus now the Hund rule would say to choose e3(S) as
representing the ground state.
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What is amusing is to think of e3(S) is the character of
the span of

α3, α2β, αβ2, β3

all times the ‘determinant.’

What do I mean by ‘determinant?’ I mean

(xy − yz)⊗ z + (yz − zy)⊗ x+ (zx− xz)⊗ y
but this ⊗ is symmetric, and we can use the Lie algebra
identity to replace each of

(xy − yz), (yz − zy), (zx− xz)

by
rx, ry, rz.

Since x2 + y2 + z2 = r2, the determinant is the third
power of the radius r3, and we get the four monomials

α3r3, α2βr3, αβ2r3, β3r3

Next, for e4(L) + e2(L) we think of this as the character
of all possible tensors of

xy − yx, yz − zy, zx− xz
with just

x, y, z.

Again we replace xy−yx by rz etcetera, and again there
is a relation, x2 + y2 + z2 is the radius squared and we
aren’t going to count it again. So there are 9 − 1 = 8
new basis elements, and this agrees with (4+1)+(2+1)
the value at L = 1 of e4(L) + e2(L).
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We again use the PBW relations, and write this as the
six symmetric ones (with r3 not counted so there are
five) and these become just

x2r, y2r, xyr, xzr, yzr

and the others are commutators, which arise because we
have the PBW relations, so that when we combine for
instance xy − yx and y, after writing xy − yx = z and
taking the tensor product rz ⊗ y we also have r[z, y] =
r2x. And we get the new monomials r2x, r2y, r2z.

So in all the e4(L) + e2(L) just gives us

x2r, y2r, xyr, xzr, yzr, xr2, yr2, zr2

All of this is times

α2β and αβ2.

So in all, we get

r3(α3, α2β, αβ2, β3),

r(α2β, αβ2)(x2, y2, xy, xz, yz, rx, ry, rz)
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So what had been a

(
6
3

)
= 20 dimensional space of

alternating forms has been converted into a 20 dimen-
sional space of commuting monomials, homogeneous of
degree three in α, β and of degree three in x, y, z, r. Each
of these is a slightly generalized wave form; if we include
the coefficients (power series in r which are polynomials
in the fk,n,l and r) we will have expressions where the
radial part is a product of radial parts of solutions of
the central charge equations while the azimuthal parts
are now merely homogeneous harmonic polynomials.

Because of the labelling by monomials in α, β, the ex-
pressions are differential forms, but not just exterior
ones, in this case just symmetric ones (like dr2 is used
to evaluate arc length). These evaluate things in the
conormal direction.
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Here is a general version of the same construction which
does not require changing the multiplication in the uni-
versal enveloping algebra. The Schroedinger equation
(with central charge assumption) describes subspaces of

C[[r]]⊗C[r] C[x, y, z, r]/(x2 + y2 + z2 − r2)

It is quite simply that, the left factor is the power se-
ries giving a radial function, and the right factor viewed
as a module over C[r] is graded and each part free of
odd ranks, 1, 3, 5, 7, copies of the space of homogeneous
harmonic polynomials of degrees, 0, 1, 2, 3 now tensored
over the reals with C[r], and with the grading matching
the periodic table very well.

And conormal principal parts are just a direct sum of
two copies of this, replacing C[[r]] by C[[r]]2 to the left
of the tensor sign, with a basis α, β.

Now, a space of such solutions (various values of n, k, l)
is usually dealt with by taking an exterior power. But
the right tensor factor is the associated graded of

U(so3)[r]/(x
2 + y2 + z2 − r2) = U(so3)[

√
x2 + y2 + z2].
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Let’s pass to a subalgebra of U(so3)[
√
x2 + y2 + z2]. Call-

ing r a square root of x2 + y2 + z2, let’s pass to the sub-
algebra generated by r, xr, yr, zr. If we rename the new
generators x, y, z again, the subalgebra now has presen-
tation 

xy − yx = rz
yz − zy = rx
xz − zx = ry

x2 + y2 + z2 = r4

rx = xr

ry = yr
rz = zr

.

The associated graded ring is the commutative algebra
which, in the earlier section, by coincidence matches the
even numbered spaces in the periodic table, with coin-
cidences about periods, energy levels, and the Aufbau.

With x, y, z thus redefined, we have the map

Λ∗(C[[r]]2 ⊗C[r] U(so3)[
√
C] )

→ T ∗(C[[r]]2) ⊗C[r] U(so3)[
√
C].
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with C the Casimir element. Each of x, y, z is inter-
preted as a generator of the Lie algebra times (the same)
square root of the Casimir element. The map is the
one which writes exterior products as alternating ten-
sors and interpret the rightmost component of the ten-
sors as elements of U(so3)[

√
C]. We consider the same

square root as being the radial function r and we com-
plete polynomials in r to include the radial component
of solutions of the Schroedinger equation and therefore
their products.

It would be interesting to see whether an interesting part
of the exterior algebra survives this map.

Assuming one has chosen an isomorphism between the
algebra and its associated graded, one can identify the
images of the exterior powers of subspaces of the asso-
ciated graded ring as being subspaces of

T ∗(C[[r]]2)⊗C[r] C[x, y, z, r]/(x2 + y2 + z2 − r2),

now our having renamed x, y, z to their original names.
The image is not quite converted into a space of solu-
tions of Schroedinger’s equation for the radial charge,
even in the coefficients of basic tensors in α, β, because
the coefficients are products. That is, the coefficients in
the base ring C[[r]], are products of radial functions of
solutions rather than solutions themselves. Also there
is some adjustment in powers of r which I still find con-
fusing.
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Abstractly the ring is very much like a tensor product
of a tensor algebra over power series in r with just the
direct sum ⊕Hj of the odd-dimensional spaces of ho-
mogeneous harmonic polynomials; but there is a slight
difference in the way r is involved in the tensor product.

In cases when only the second tensor power is consid-
ered, the left factor, it is a direct sum of two parts (sym-
metric and exterior) and the decomposition still agrees
with what is called the ‘singlet’ and ‘triplet’ configura-
tion. Radial functions with different values of n (not
only l) are linearly independent; one typically will fix k
to be the atomic number. Then the part of each odd
dimensional rank in the right side of the tensor factor
can occur as many times as pairs n, l. That is, the actual
dimension of the space of functions which arises is a sum
of odd numbers times the various n, l and it is a ques-
tion whether these spaces may be more directly related
to the periodic table than the characters coming from
exterior powers (elementary symmetric polynomials).

The point is that a character formula can be interpreted
as saying that a particular space of antisymmetric ten-
sors is isomorphic to a space of commuting polynomi-
als, and yet some multilinear algebra can actually re-
place the alternating products with commuting prod-
ucts in the coefficients of tensors in α, β in various ways.
Though the calculations here are probably degenerate
and not correctly related to more essential ideas about
vector bundles which we’ll discuss later.
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I don’t know to what extent these can be nonambigu-
ously interpreted as commuting polynomials in x, y, z, r
times basic tensors (words) in α, β, and times radial
functions. This depends on deciding whether there is
any natural identification between U(so3)[

√
C] and its

associated graded.

One thing that is appealling about the notion of con-
verting the antisymmetric tensors into symmetric co-
efficients of tensors in α, β is that eigenvalues of the
Casimir element, which we know are related to energy
level changes, are mixed in with the structure constants
of the universal enveloping algebra.

I know that Dirac was transfixed with how commutators
are a special case of Poisson brackets. But that did
require postulating a Hamiltonian.

Lie algebra actions are there more naturally, and al-
though they are they are well known and historically
prior explanation, they are the one used by chemists.

But chemists sometimes go no further than looking at
character diagrams. The disjunction of the wave func-
tions of hypothetical electrons didn’t really match any-
thing, so exterior products were needed.
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Here I’ve just interpreted them as having more to do
with lie bracket, and one can wonder whether convert-
ing the exterior products into Lie brackets is a better
simplification than considering only characters. Trans-
parently, such a calculation is closely related to the Auf-
bau, which wasn’t explained by what is in general the
much larger spaces of wave forms that are usually used.
However it is the vector bundle approach which is good
at matching the fine and coarse structure, on the other
hand.

As a final comment, as Weyl and others authors point
out, a general molecule has no symmetry. The usefulness
of understanding atoms should be that it gives some
understanding of electromagnetic waves, and chemical
interactions may be understood as something along the
lines of a fluid mechanical phenomenon, rather than as a
combinatorial phenomenon related to quantum numbers
of atoms.

In fact, if you think about it, it is because in the the-
ory of sound phases do not matter much, that it was
considered to focus on the decomposition of wave func-
tions into components in representation spaces. But in
higher dimensional harmonic theory, what needs to play
the role of phase in Fourier theory is the actual repre-
sentation components.

There is something to say about generalizing the calcu-
lations in this paper to molecules, but let us leave that
for now.
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Hodge theory

I think rather than endlessly editing the foregoing, it
makes sense to point out inherent weaknesses in the crit-
icism above. One issue is, the point upon which I am
nit-picking Schroedinger’s analysis is in the issue that if
π : N →M is the structural map of the tangent bundle,
then it is not the case that a section of π∗ΩM on a subset
of N is necessarily a pullback of any section of ΩM . That
is, one should not confuse the notion of ‘a section of a
pullback’ and ‘ a pullback of a section.’ The notion of a
section and pullback do not commute with each other.

And if you look at even my own analysis, I ungrammat-
ically and incorrectly confuse the notions, assuming the
reader will take care of the syntax on my behalf.

But I do want to return to Schroedinger’s statement that
it is ‘well-known’ that

px = mẋ = ∂W/∂x.
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On the general issue of deception, I would like to say
this. That, some days ago, I encountered in the news
what, it occurred to me, is a really good example of
a long-term, insidious and intentional deception of the
public. This is genuintely not connected with academics
or universities, and I think, though, that I somehow
forgot to make any mental note of what the story was
about. I remember that it genuinely was painful to think
about, and maybe the fact I honestly cannot even bring
to mind this example, or any serious example – while
knowing that if I even wait a few hours I’ll see yet an-
other and yet another – might be an example of what
Streissand had sung, in a song which I do not like but
in this context, at least, comes to mind in place of what
I’m trying to reover, “What’s too painful to remember,
we simply choose to forget.”

I know of many examples when deception is done at
universities, always in a way that in the final analysis,
in understanding that the means justify the ends, is seen
as truly compassionate towards the public, towards each
individual who is involved.

Perhaps one sees this when a student has failed an ex-
amination. Even in closest friends, when one has made
a mistake of thought, if he is capable of understanding
his error, others will not hide this from him, will not
humour him as though he is insane and unable to see
truth.
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And I do not wish to dishonour Schroedinger nor his
forebears. The fact that it seems, from understanding
his paper, that he has, in my opinion, found the le-
gitimate explanation for the spectrum of hydrogen by
finding assumptions about waves and geometries which
I believe more than any other, should console them if
I should dishonour his memory by what I am about to
say.

But, really, is it not a serious unintentional deception to
say that it is ‘well-known’ that px = ∂W/∂x?

Now, I have to also point out an omission in what I wrote
above. Even in summarizing his argument, I initially
stated that the gradient of W is (px, py, pz,−E), and I
did not give any but the first variable any name.

The reason why I did this is that in physics writing,
there is a convention that it is in some sense illegal to
factorize this

px = m
d

dt
qx.

And this is done because, the ease with which it could
be done, combined with reluctance to do it, is something
that the reader understands must have taken place for
some intentional reason. The reason is that one has two
copies of d

dtqx, one interpreted as a section of the tangent
bundle, and another interpreted as the rate of change of
a coordinate of point in the base.
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It absolutely does not matter whether one does the ac-
tual factorization or not. In the formula for what I called
the spatial gradient of W the occurrence of

√
m in the

denominator takes care of this. If I had not explicitly
said that px is the x component of momentum, and like-
wise for y and z, this would have become clear when the
factor of

√
m occurred, and when the value was given of

9.1 ∗ 10−31 this would have become abundantly clear.

But even if we understand that the m was implicitly
there, and if we understand correctly that there are two
different ways the symbol d

dtqx might be used, and anal-
ogously for y and for z, one really should be startled by
the notion that it is ‘well-known’ that ∂

∂xW = px.

It is, for example, well-known that the frequency of 0.76
petahertz was observed to occur, near infrared range. It
would have looked like glowing embers in a fire look, the
same colour.

It might also be well known that the chain rule holds for
derivatives. Here, when I say ‘well-known,’ I mean, in a
mathematical sense, it is known that particular agreed
axioms for what the symbols mean and how they are
agreed to behave, means that they are agreed to behave
in such a way that it is agreed that one expression can be
substituted for the other without changing the meaning
of what is said.
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The statement that it is ‘well-known’ that ∂
∂xW = px is

of neither type. To say that it was well-known, speak-
ing to physicists, was either to state something false, or
to unintentionally credit mathematicians for intuition
which exceeds any intuition which an honest mathemati-
cian could ever have.

Now, I have mentioned in the past that the nilpotent
operator η on the cotangent sheaf of the tangent bundle
if it is to be made scalar equivariant by a tensor prod-
uct with a tensor power of the natural representatino of
the scalars, needs the −1 tensor power, the one in which
multiplication is reversed. It may be best to only worry
about invariance for the group U(1) within the multi-
plicative group of scalars, and so when I write C I mean
the inverse of the natural representation of the unitary
group. Then η and j are U(1) equivariant

η : ΩN ⊗ C→ ΩN .

j : ΩN → ON
iδ : ΩN ⊗ C→ ON .

So if δ is any vector field on N then iδη has the same
domain and codomain as j ⊗ C and we can if we wish
define the notion of δ being equivariant as the condition
that iδ commutes with the scalar action in this sense.

I’ve avoided here using the symbol C as it ambiguously
might mean either with natural or with trivial scalar ac-
tion, according to whether one uses conventions of linear
algebra or representation theory.
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Whenever a vector field δ on N is U(1) equivariant in
this sense, or if we extract the equivariant part, then in
coordinates q1, ..., qn we have

δ(dqα) =
∑
β,γ

aβ,γα dqβdqγ.

The coefficients aβ,δα are sections of OM and this is a
symmetric expression (the product is a product of func-
tions whose domain is the tangent space N); it describes
a connection on M. It is a torsion-free connection since
aβ,γα = aγ,βα .

On the other hand, if we consider in the expression for
each pi in ηω =

∑
i pid

′qi, writing the ‘degree one’ part
which transforms as scalars, as

pi =
∑

hijdqk

with now hij sections of OM then

ηω =
∑
ij

hijdqjd
′qi

This is now a tensor product, and the U(1) action is
the natural one on the first factor and the trivial one
on the second. The form ω is thus determined by the
connection matrix aβ,δα our general matrix hi,j and it is,
assuming δ to be involutive,

ω = δηω = iδ d
′ηω + d′ iδηω

iδ
∑
ij

hijd
′dqj ∧ d′qi + d′

∑
ij

hijdqjδ(qi)

= iδ
∑
ij

hijd
′dqj ∧ d′qi + d′

∑
ijβγ

hija
β,γ
j dqjdqβdqγ
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In the first part of the expression, one has the contrac-
tion of a two form in which each monomial is a ten-
sor product of one which is in the C isotypical subsheaf
with one which is in the invariant subsheaf and indeed
is a pullback of an individual form from M. Thus the
antisymmetric form which underlies the Hamiltonian is
compatible with the isotypical decomposition of ΩN .

The second part of the expression is the deRham differ-
ential, on the tangent bundle, of a cubic symmetric form
now.

If we wished to consider whether first part may or may
not be considered to be a Hermitian form, we might
from the outset replace C with its tensor square, so that
here the action on the first tensor factor is through the
squaring map and on the second is the identity. Then
tensoring with one copy of the unmodified C gives the
same tensor product which occurs in Hodge theory as far
as the U(1) action, and there results a sensible involution
whose invariant part is a Hermitian form if M has a
complex structure and the sheaves we are talking about
such asOM are considered to be the sheaf of maps of real
manifolds to the complex numbers as a two dimensional
manifold; and if we then take the U(1) action is the one
induced from the action of the unit circle on the complex
valued real smooth cotangent sheaf.
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Whenever relativistic considerations provide a notion
that the tangent bundle and cotangent bundle can be
identified with each other in various ways then such a
matrix always arises. If it is taken to be positive definite
Hermitian then it corresponds to a Riemannian metric
on the underlying real manifold of M which is invariant
for the U(1) action on the real smooth complex valued
cotangent sheaf. It need not be taken to be positive
definite. When it is nondegenerate the vector field is
determined by that matrix as we have seen, and locally
if −dH is the contraction of the form then indeed the
∂
∂qi
H will be the rates of change of the dqi viewed as

functions on the tangent bundle, and deterine the vec-
tor field.

Therefore, in particular, whenever the matrix hij is non-
degenerate it determines the connection matrix aβ,δα .

That is,
∂

∂qi
H =

∑
i,j,α,β

hija
β,γ
α dqβdqα

as section of ON , and when hij is an invertible matrix
this determines the matrix aβ,γα because it determines
the section aβ,γα = aγ,βα because the monomials dqβdqα
for α ≤ β are linearly independent over OM .

If ηω is interpreted as being electromagnetic field, it
must be a field which exists and is not actually ever
zero at all points of configuration space M , in such a
case.
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The type of wave functions which Schroedinger consid-
ers, or as we’ve considered them, wave forms, all become
holomorphic once we resolve singularities in the coordi-
nate system. What concerned me in the classical primer
was the impossibility of extending any such involutive
δ to the tangent bundle of a Kahler compactification of
M if the Chern numbers of even the uncompatified M
are not all trivial.

A much more serious objection is that one should not
impose a complex structure on a manifold that does not
arise naturally without a complete analysis of the defor-
mations of complex structures, of the choices that have
been made.

A final objection in this section: we have not considered
as yet what general considerations might render δηω a
closed form. This is the Lagrangian condition, a neces-
sary condition for ηω to be the type of non-closed wave
form we’re considering. Let’s abandon any considera-
tion of Hermitian structures and consider what is both
the the easier and more general real Riemannian case in
the next section.
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The Levi Civita action is not Lagrangian for its
Riemann metric

Turning for a moment just to the case of a real Rieman-
nian manifold M, where we know that there is an invo-
lutive vector field, it is the relevant question what is the
condition for a particular natural involutive vector field
to be Lagrangian with respect to a natural one-form.
The first port of call is to see whether the involutive
vector field actually coming from the (torsion-free) Levi
Civita connection is actually Lagrangian with respect to
the one-form on the tangent bundle N coming from the
metric on M.

We will see that in general this is not the case.

So we consider the one form ηω =
∑

st gstdqsd
′qt, and

consider the derivation coming from the Christoffel sym-
bols

Γjki =
∑
r

gir(∂kgrj + ∂jgrk − ∂rgjk)

with superscripts denoting entries of the inverse matrix.
To check if δηω is closed it will be enough to check if
iδ
∑

st d
′(gstdqs) ∧ d′qt is closed; this is∑

st

gstδ(dqs)d
′qt + dgstdqsd

′qt − gstdqtd′dqs − dqsdqtd′gst

The only term where the symbol δ occurs is where δ had
been applied to a product containing a factor which was
d of something.

Note that the gst in that term contracts against the first
factor gir in the Christoffel symbol, and both may be ig-
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nored. Then we obtain the second factor of the Christof-
fel symbol suitably re-indexed, and thus the whole ex-
pression becomes∑

tjk

(∂kgtj + ∂jgtk − ∂tgjk)dqjdqkd′qt

+
∑
st

dgstdqsd
′qt − gstdqtd′dqs − dqsdqtd′gst

The reason only one term has a function that is not a
differential of either type is because of the differential
d′(gstdqs) in an earlier formula.

The first part simplifies now and this becomes∑
jt

dgtjdqjd
′qt +

∑
tk

dgtkdqkd
′qt −

∑
tjk

∂tgjkdqjdqkd
′qt

+
∑
st

dgstdqsd
′qt − gstdqtd′dqs − dqsdqtd′gst

Three of the terms are equal with the same sign So we
obtain, it appears, modulo errors,

3
∑
st

dgstdqsd
′qt−

∑
ijt

∂tgijdqidqjd
′qt−

∑
st

dqsdqtd
′gst−

∑
st

gstdqtd
′dqs.

And we can simplify further recognizing something is a
d′ and we get

3
∑
st

dgstdqsd
′qt − 2

∑
st

dqsdqtd
′gst −

∑
st

gstdqtd
′dqs.

The differential of this is not zero in general, and so even
for a compact Riemannian manifold, the action coming
from the Levi-Civita connection is rarely Lagrangian for
the corresponding one-form.
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The notion of an action (automatic extension of con-
scious control) is difficult and paradoxical; even when a
natural one exists (when there is a natural Riemannian
metric for some reason) there is no known natural one
form with respect to which it is Lagrangian. Another
difficulty with such a notion is that even if one finds
that dualities produce Lagrangian actions, yet a dual-
ity represents a type of relativity that only relates two
points of view, not more than two.
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Foundations

Rather than now thinking more about the relation be-
tween the term symbols and the finer frequency divi-
sions said to come from spin-momentum interaction, or
the relation between W, eW , and dW, it makes sense to
make some general comments about things like the the-
ory of groups, about linear algebra, Galois theory, and
set theory.

The first thing to say is that altough things like the spe-
cial relativity model of space time, are considered to be
a set of points, yet, no-one in either Math or Physics,
and rightfully so, has ever cared about whether points
of space or space time are elements of a set. For ex-
ample, it contradicts Galilean relativity that if one a
person on land has coordinatized a map of the sea as
a set of points, while someone travelling on a ship has
coordinatized positions on the deck of the ship as an-
other set of points, if one really believes one set should
be a subset of the other. What in set theory is some-
times jokingly called a ‘universe,’ is an idea that is not
entertained seriously, and does not play any part of any
currently accepted theory of sets.
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I remember my constant frustration in classes when a
teacher would be speaking in analogies, for example ask-
ing us students to imagine five identical objects, and
then asking us to interchange two of them. Surely the
teacher would never know whether the students had suc-
cessfully completed that task, nor, indeed, could a stu-
dent check whether he’s successfully done it, or done it
twice, or a million times, or never.

If the teacher asked me to describe the difference be-
tween the two objects which I was supposed to have
interchanged, I should be able to say, this question does
not make sense, because that difference cannot be ob-
servable to you. A teacher should not tell the class that
every equilateral triangle has three vertices, known as
the nip, the nap, and the nup; and then give an ex-
amination with rows and rows of pictures of equilateral
triangles, upon each of which the student is charged with
labelling the vertices nip, nap, and nup. In subtler ways,
though, this type of thing does happen.
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If a student is given a linear transformation f of a finite
dimensional vector space, and asked to find an eigen-
value, which is a number λ so f(v) = λv for some vector
v, if he cannot find such a number anywhere in his field,
then within the space of linear transformations of the
vector space, a set to which f already belongs, there is
a larger field. There is more than one such field, all con-
taining copies of f under projections. These are ways
we might have considered that f is a number after all. A
familiar case, when we have a real two-dimensional vec-
tor space, is when the span of 1 and f is a copy of the
complex numbers. One might say, there are two eigen-
values, one is f and the other is the complex conjugate
of f. When the matrix of f is diagonalized over the com-
plex numbers, these two entries occur in the diagonal.

But, really, when you go through the details, there is
not ‘f and also the complex conjugate of f .’ Rather, f
has ramified into a pair of indistinguishable elements.

The axioms of set theory don’t happen to include any-
thing like the functor which applied to any set, gives
a disjoint union of two indistinguishable copies of that
set. When things are formalized there is the operation
of taking the cartesian product with a two element set,
but there is no two element set whose two elements are
indistinguishable.

This is a mild detail, only.
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By the way, when I said that f ‘is’ an eigenvalue, I did
not mean to say λ equals f and so that fv = λv for all
v. Rather, now there are two copies of the vector space
V, and we might take their tensor product V ⊗ V. Then
what I am calling f is 1 ⊗ f while the eigenvalue, be-
longing to the endomorphism ring of the leftmost tensor
factor, which we interpret as our extension of scalars, is
f ⊗ 1. Then one must prove that for any linear trans-
formation f there is always a v ∈ V ⊗ V such that
(f ⊗ 1)(v) = (1 ⊗ f)(v). Or, if f is invertible, that the
invertible linear transformation f ⊗ f−1 always fixes a
point of V ⊗ V.

There is a symmetry of the situation, so that just as
1⊗ f is an eigenvalue of f ⊗ 1, so is f ⊗ 1 an eigenvalue
of 1⊗ f.

The moment one begins to wonder what makes a lin-
ear transformation invertible, one encounters things like
how you can naturally dualize V by tensoring the (co-
variant!) space Λn−1V with just the dual of the one-
dimensional vector space ΛnV, where n is the dimension
of V.

Then, a student given list upon list of linear transforma-
tions, and asked to find an eigenvalue of each, could just
turn the page upside down, and where had been written
1⊗ f is now written f ⊗ 1.
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Such a solution would seem Zen like, but in a bad way.
It would seem Zen like in the sense of saying ‘The answer
to your question is identical to the question which you
asked.’

But, it is sometimes important to do that. What it
comes down to is that people who do not know much
Maths, think that Maths is about numbers, and that
they know where numbers come from, and what they
are. So a Maths teacher might give a student a list of
linear transformations, thinking ‘these are something I
will never understand until they are tabulated and clas-
sified numerically.’ Then the student is charged with
converting these mysterious objects into something tan-
gible, into numbers as can be written on the paper and
handed in as solutions.

Perhaps there are two types of student experiences. There
is the type of experience where one learns to subtract λ
times the identity from the matrix, leaving λ as a vari-
able; then takes the determinant, sets it equal to zero,
solves the polynomial equation to find a list of possi-
ble values of λ, then for each of these values calculates
the kernel of the matrix minus λ times the identity, and
finds in this way the eigenvectors.
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And then, perhaps, there is another type of experience,
which amounts to getting confused, losing contact with
the clear boundaryline between what is accepted to be
a number, and what can never be accepted as being a
number. Being a student who never again works out
which side of the boundaryline he is occupying in any
future calculation.

At times there is a phenomenon, which one should be
deeply suspicous of, like when a person has been working
with complex numbers, and eventually writes down an
expression that is invariant under complex conjugation.
This would be a notion based on the fact, if f has been
ramified into two indistinguishable copies of f, then the
permutation group which interchanges them, ought to
fix any meaningful expression.

The reason I say one should be suspicious of such a phe-
nomenon is, because, for example, one might say, if you
blow up a point in space, then because all the points of
the exceptional divisor have sprung into existence all at
once, with no conscious act which possibly could have
distinguished one point from another, then there should
likewise be a group acting transitively, so that any mean-
ingful combination of conormal principal parts should be
one which is invariant under not only the symmetries of
the sphere, but also this independent group action.
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If you believed that, you could conclude when the as-
sumption of a central electrostatic field is violated, the
corresponding departures from a set of frequencies of
emitted light from just being differences of k fold sums
of reciprocal squares should not cause each spectral line,
which had previously been found in proportion to a dif-
ference of two sums of k reciprocal squares, to split into
any more parts than can be accounted for by the spec-
trographic terms e2l(L)es(S). That, for example, the de-
composition of each such term into a linear combination
of ej(L) upon setting S = L, as though only the sym-
metries should have been allowed arise by exponentiat-
ing infinitesimal rotations of three space to the diagonal
subgroup, should be invisible in the spectrum.

Yet, the finer structure is not invisible, and so it cannot
be true that when the origin is blown up, within Ṽ , the
divisor of poles of the potential function which had be-
come analytic on Q̃, that we may correctly interpret the
set of points that are created as new and indistinguish-
able points.

It was definitely true about the degree four etale cover,
that points in the fibers, if we work over the complex
numbers these become reduced to two-element fibers –
are mathematically indistinguishable. But this is rare.
Blowing up is a functor. Just the fact that it is a functor,
just the fact that I can even speak of natural transfor-
mations, means that there must exist physical models in
which the appropriate automorphism group is just the
trivial group.
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The conormal principal parts are conormal in the vari-
ety where we have set r to zero, and the Severi Brauer
variety P is the locus where x, y, z are all zero. So the
conormal principal parts of P within a variety where r
is zero do seem intuitively like something very fictional.
But we could give a precise mathematical definition to
the term ‘fictional,’ to mean in a context similar to this
one something like the rule which assigns to any func-
tion f and any point y in the codomain, the set f−1y.

It is hard to think about this, because one would say
that the only important case of this is when Y has one
element, and then f−1y is just a set, and the rule assigns
to any set its set of elements. Yet, this operation is the
identity, hardly fictional, and I admit being confused
upon this point.

Within concrete categories, we want to say that some-
thing is fictional if it is one of those things which is a
slight generalization of a functor, but misses being func-
torial because when it returns a value of a set, the el-
ements of that set are indistinguishable. The failure of
being a functor may imply an automorphism group of
the various sets that are returned, and one would say
that a function is not observable if it is not invariant
under the group action; if it does not respect orbits.
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An example is the tangent bundle of a manifold, one
should say that since it depends functorially on the man-
ifold, one cannot apply a vector bundle automorphism
of the tangent bundle sight unseen. After the automor-
phism had been applied everything would be moving in
the wrong direction when it moves! Then one should
say, arbitrary sections of the tangent bundle are observ-
able; then, if one forgets that it is the tangent bundle,
and only thinks that it is a vector bundle, not every
section is observable anymore.

Earlier I said that I admired Schroedinger’s creation of
a differential equation model which explains the earlier
formula for the spectral lines of Hydrogen. Something
now that I admire is what Quantum Mechnics decides
to do at this juncture. When one has chosen the rele-
vant subgroup (either all of SU2 × SU2, or the diagonal
subgroup SU2, or just the torus C×), one says, spaces of
functions which are observable can only be those, under
the group action on the set of all subspaces, which are
fixed under the group action. These are then represen-
tations of the chosen subgroup. But, what is observable
is not only the vector space, but the vector space to-
gether with the isomorphism type of the representation
of the stabilizer subgroup acting on the points of that
subspace.

One does not say, ‘the points of the exceptional divisor
are indistinguishable and so we know no more than if we
had never done the blowup.’ That is a true statement
by the way, though it is not spoken.
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One says, once we minimally resolve this point, we ob-
tain a Riemann sphere, which has al its points indistin-
guishable because any one can be transformed to any
other by an element of its autormorphism group. If I
allow myself to forget the ambient surface in which the
point had been, then no one vector field of the Riemann
sphere is observable. Yet, the whole space of vector fields
is, and also the isomorphism type of the space of vector
fields as a representation of the automorphism group of
the Riemann sphere.

I cannot think of any general principle that is a better
context for quantum mechanics than just to say it is a
nice theory. I am very uneasy if someone says, here is
a three element set, and now I am going to start per-
muting its elements. Maths by itself is, as we know,
paradoxical from the start. Yet, the notion of setting
up a space and a sheaf of analytic functions, in order to
try to explain spectroscopic lines and the periodic table
is in some sense the simplest and most obvious choice.

If we were using a circle, or C×, to understand something
in physics, and using analytic functions, we would be
writing down Fourier series which is the same as Laurent
series. The indexing set for our functions would have
the affine structure of the integers, and no one would
say that something about the spacing of the integers
is telling us anything about the physical world. The
Fourier coefficients have certain geometric positions just
because we chose to set up our coordinates in a certain
way.
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Likewise, the fact that we have Fourier coefficients in-
dexed by numbers s and l is because we chose to work
analytically, and, although I do not completely under-
stand the situation mathematically, we are working on
a variety which is the divisor of poles of the potential
function V when r is made analytic by a two sheeted
branched covering, and becomes a variety with an ordi-
nary double point, and one passes to the minimal reso-
lution.

It would not be correct to say that the fact that both s
and l are needed has anything to do with a spinning elec-
tron. In fact s is clearly needed to explain the periodic
table. We would not say that the periodic table has its
structure because we chose r to be anaytic, but rather,
the transformations we needed to do to make r analytic,
so that wave functions or forms can be described ana-
lytically, ended up also making it easy to explain the
periodic table in at least one way.

And it is also quite possible that measurements of s may
indeed have to do with a spinning electron, with relativ-
ity and magnetism, with precession. In fact, it is known
(see Wikipedia) that the Pierre Curie constant for the
degree of paramegnetism of a material is proportional to
j(j+1) for j the magnetic quantum number. For exam-
ple, the ion Gadolinium III, which occurs in Gadolinium
triChloride, has ground state with character e0(L)e7(S)
and j = 7/2 is used as an agent in MRI scans because
of its ability to react to a magnetic field.
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People who work in moduli spaces or stacks think more
deeply and correctly about the issues of naturality which
I mentioned.

I shouldn’t have said that fibers f−1(y) are not func-
tors...I was somehow imagining a case when someone
never specified y.

A better example is just universal covers.

If someone has a configuration space M, then does some
analysis on the universal cover M’, then when they are
done, if they haven’t worked equivariantly for the fun-
damental group, their answer could still depend on a
choice of basepoint.

So it can make sense to have ‘the’ universal cover, ad-
mitting that it is not a correct functor, and then work
equivariantly – which means the only vector spaces con-
sidered will be modules and the only maps invariant for
the group action, fixed that is.

Then if one finds that spaces of solutions of some differ-
ential equations are representations of that group, this
is of course not because that group represents something
in the real world moving or spinning. That is obvious.

The analagous analysis is not quite true for blowing up,
in cases when it is natural, in cases when a minimal
surface exists and is unique.

It only would become true in cases when there is not a
unique resolution.
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Here there is a unique and canonical resolution, and yet
part of the spectrum is invariant and part is not.

It is not inconsistent that part is invariant, and the ex-
istence of part that is not is proof, if one needed it and
believed that the model matches the real world exactly,
that minimal resolutions in this case in fact are functo-
rial with respect to automorphisms of the ambient space.

As a final little comment on these topics, the equations
which Schroedinger wrote at the beginning, ended up in
his considering eigenfunctions of the Laplacian. Yet, if
he had written instead of ψ = A(x, y, z)eiW (x,y,z,t), but
more simply ψ = eW then things might simplify using
the rule

∆(eW ) = (∆(W ) + |gradW |2)eW .

So the condition that a function f is an eigenfunction is
equivalent to the Poisson problem

∆(W ) = (f − |grad W |2).

With his conventions, |grad W |2 = E − V (x, y, z) the
kinetic energy, which in a more general Hamiltonian for-
mulation is iδηω, the contraction of a one form on the
tangent bundle along an action vector field. Since f it-
self is a constant plus a constant times V then iδηω is
already a constant plus a constant times V. In any case,
the potential does have a pole when r = 0 and a correct
generalization may need consideration of residues.
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Unification of the various coupling schemes

In an earlier section, I mentioned a coupling scheme that
is different than Russell-Saunders, which is used for ex-
ample for Neon. This is said to combine various aspects
of orbit-orbit and spin-orbit coupling.

It is true that the various orbit-orbit coupling schemes
describe in the end the same list of irreducible represen-
tations, even as subspaces of one and the same vector
space, and so it is worth considering whether there is
any reason to use more than one scheme.

From the standpoint of perturbation theory there is not,
and it seems likely also that if Hartree-Fock or other
approaches are correctly formulated they will not either.

An orbit-orbit coupling scheme describes a hierarchy of
representations, and yet only the irreducible represen-
tations of the actual rotation group or its double cover
have physical significance.
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In the case of the perturbation theory approach, for the
coarse structure, this is seen in the way that one can ig-
nore all but one eigenspace of the Laplacian plus poten-
tial term (including repulsion and attraction), to start
with, and the full calculation only depends on linear
maps of that eigenspace which come from the action
of the operator on Hilbert space, composed with the
inclusion and projection to make it become an opera-
tor on a finite-dimensional vector space. Since the full
potential term is invariant under the cartesian prod-
uct SU2 × SU2 its eigenspaces will also be, and com-
prise sums of irreducible representations. Except in as-
toundingly rare cases (which would not occur in real-
ity) they will simply be such irreducible representations,
and once term symbols are resolved into multiplicities
like P ◦, P ◦ bis, P ◦ter, ... they will correspond to such term
symbols too. This only depends on choosing the decom-
position of the isotypical space to be one which is pre-
served by the operator, that is, according to eigenspaces
of the restriction of the operator to the isotypical compo-
nent, or indeed, what is practically much simpler, to its
action on the center of the endomorphism algebra of the
isotypical component as a representation of SU2 × SU2,

which is, in case of multiplicity m, only an m dimen-
sional vector space.

There is no second way of doing the calculation that
gives a different result, and no choices have been made.
So, for orbit-orbit coupling, all that needs to be done is
to reiterate the details of this.
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For orbit-spin coupling as I mentioned, this is only a
matter of correcting the definition of the Laplacian to
be one which acts, as it were, diagonally, and this can be
done by adding the correction term, a function multiple
of CJ − CL.

Thus, all the various orbit-orbit and spin-orbit schemes
can be subsumed, from the standpoint of a perturbation
theory approach, and, certainly, from the standpoint of
a theoretical understanding, into a single classification
scheme.

This calssification scheme, to fill in the obvious details,
goes like this: A molecule may have upon it an ion.
Firstly, now, once a number of protons kp is chosen for
the ion, the number of electrons is a number k with
0 ≤ k ≤ kp.

Secondly, a ‘sum of reciprocal squares’ energy number, a
rational number c which is a sum of k reciprocal squares,
is chosen. There are infinitely many such rational num-
bers, but they are well-ordered, and finitely many if any
bound is chosen.

Thirdly, an actual particular sequence n1, ..., nk with

1

n2
1

+ ...+
1

nk2
= c

is chosen, the order does not matter so we may as well
take it to be an increasing sequence.
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Fourthly, an electron configuration with this sequence
of n values in some order is chosen. For instance if
the sequence of n values is 2, 3 we have as possibilities
2s13s1, 2s13p1, ... These are more familiarly abbreviated
s23s, 2s3p. There are finitely many possibilities because
of the fact that ‘l is less than n’, and we include here
all possibilities, even ridiculous ones like 3s12d1 which
do not occur in nature. Part of the unexplained Aufbau
is essentially the practical limitation on which of these
finitely many choices really occur.

Fifthly, an assignment is made of a term symbol to each
orbital of the chosen electron configuration.

Sixthly, the restriction to the diagonal SO3 × SU2 is
done. This means that the tensor product of the irre-
ducible representations assigned to the term symbols in
the sequence is decomposed, and one term symbol is cho-
sen. The superscript circle can be included but does not
matter as it is determined by the electron configuration,
so the next choice is a symbol like 3P ◦.

Seventhly, each term symbol has a multiplicity within
which it occurs in the electron configuration, I’ve started
just using the latin superscripts, so from 3P ◦ we must
choose either the undecorated 3P ◦, or else 3P ◦ bis,3 P ◦ ter, ...
The list is finite, usually has only one entry, and is to-
tally determined by the electron configuration and term
symbol.
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Eighthly, the subscript is applied, an integer or half-
integer, there are finitely many possibilities depending
only on the underling term symbol, so finally we have a
symbol like 3P ◦ ter2 . Here is a careless sketch of the tree
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Starting from the same number of electrons and protons,
a different route down a different branch of the tree gives
a second such symbol, and a pair of such final symbols
(one decorated with a circle and one not) corresonds to
a theoretical frequency in the spectrum of a polarized
wave that could be received from this ion.

Because we are talking about two ends of a tree, there
is a unique path in the tree from one end to the other
without retracements, and there are various possibilities
for how far up in the classification one has to go to
connect one end to the other.

This classification is by a tree with eight levels of branch-
ing, of which the only infinite one (for a fixed number
of protons) is in a choice of a rational number which is
a sum of k reciprocal squares.

For an example which we already discussed, the green
triplet for Magnesium involves three paths. These go
all the way up to the top of the tree, where nothing has
been chosen except the number of electrons and protons,
and all the way back down a different branch. At the
very end, there are three choices of subscript 0, 1, 2 for
the term symbol, and that is why there are three green
spectral lines.

The nearby yellow triplet is totally different, not requir-
ing going up to the root of the tree.
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So the green triplet is a phenomenon like seeing one
leaf of a tree, very nearby three other leaves. But when
you look at the tree, you see that the one leaf is on a
totally different branch, and you have to go back and
back through branching to get all the way to the base
of the tree, before you find the shortest path connecting
that one leaf to the three others. The relative positions
of the three leaves would be fixed, but the positions of
the three together relative to the one would depend on
deep structural properties of the tree. And this is why
the green triplet is sensitive to even small changes in the
compensation coefficient, but not the yellow triplet.

The three lines in the triplet are said to be part of the
same ‘fine structure,’ but this is a contrivance and there
is no reason that two lines need to be closer if they are
close by reason of proximity in the tree, than if they
are far. The tree structure is a heuristic, with historical
origins in projective geometry and representation the-
ory, and yet it does give a sensible classification which
a person might find useful. It is a beautiful algebraic
construction, which does also to some extent match the
closeness of spectral lines, but it does not describe any
physical ‘coupling,’ and there is no need to adjust spec-
tral lines, or the calculation of spectral lines, to make
them match the algebra.
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In the case of the ground state, some of the classification
is likely to degenerate and become simpler. If you con-
sider in the classification,the step where you have chosen
a sequence of term symbols, one for each orbital, because
of the Aufbau for the ground state, this is identical to
what you would do if you were classifying spectral lines
separtely for separate atoms each with one of the unfilled
orbitals as its only unfilled orbital.

Then the notion of polarization that is relevant, for the
cartesianproduct of one copy of SU2 × SU2 for each or-
bital, is the same as wanting to think of wave functions
polarized in the way that planets orbiting a star are, but
with one sort of plane for each orbital.

And, the important thing is that these do not have a
lot of symmetry, but within the space of wave functions
we’ve made no essential choice.

It is like saying, I want to calculate the potential energy
of the earth rotating about the sun, then I can choose a
coordinate system where the earth is in the(x, y) plane.
I have not made an essential choice, but now once that
choice is made, then the symmetry is broken and there
are restrictions on what subsequent choices can be made.

The fact that wave functions which respect such a polar-
ization do not represent every energy level even coarsely
now corresponds to the fact that separately polarizing
more than one wave function does further constrain the
symmetry.
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But there is an issue here of actual physics, and that
is, the classification which I gave just now is very ab-
stract, but I wonder about the practicalities of the step
where you assign one term symbol to each orbital, in
essence choosing one irreducible component of an ex-
terior power of an irreducible representation, and then
tensor all these together and decompose again.

The reason I wonder about this is that in nature, a sit-
uation of an atom even having more than one unfilled
orbital at the same time is rare. It occurs in excited
states, but not in the ground state.

So if we are really talking about ground state waveforms,
then nothing goes wrong here. When we look at the
term symbols we’ve really assigned to the orbitals, prac-
tically speaking the onlyl energy levels that are going to
arise are the ones where we’ve just assigned type S to
all but one of the orbitals. Then the step degenerates
where we take a tensor product and decompose.

Then, the term symbol we get at the end is nothing
but one of the term symbols we would have had for a
different atom with just that same unfilled orbital as its
unique unfilled orbital. Or, truth be told it is no longer
a different atom, I am saying, our atom must already be
one of those basic trivial atoms.

So for the ground state, if I really do choose that very
restrictive polarization it actually is not really restrictive
at all because all but one of the orbitals are rotationally
symmetrical because of being filled.
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I had been sort of hoping that a notion of such restricc-
tive polarizations might relate to bond angles, but here
we see that there is no relation with bond angles, as in
the ground state the polarization even in this restrictive
sense does not impose any constraint upon the atom and
is an inessential choice like choosing the (x, y) plane for
the orbit of the earth.

Regarding the spin-orbit coupling, in some sense this al-
ready is part of the fact that we used SU2×SU2 and one
of them is somehow said to have to do with ‘spin.’ But,
for the fine structure, the strange quantization of angles,
or notion of ‘angular momentum operator’ is not needed
for any of the calculations that are said to be explaining
‘spin-orbit’ coupling, it is just necessary to use the cor-
rect Laplace operator in the first place, or correct it by
the addition of the function coefficient (which we men-
tioned already) times CJ − CL. This fails the rule that
the position of a coarse line by the character agrees with
the ‘center of mass’ of the fine lines, but there was never
any reason for asserting that this should have been true,
and it is certainly wrong to add an unexplained term to
Schroedinger’s equation to make true a rule which could
have no experimental verification.
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Finally, just to reiterate this in what I hope will be a con-
vincing way, to have a classification sheme for something
does not classify it, and there is always more than one
classification scheme. We might say that actual trees
in nature are classified by binary rooted trees. There
is a universal binary rooted tree in which any one can
be embedded, and the only choices needed to make is
whether each branch goes to the left or the right. In
nature, if we decide that a tree branches in a binary
way, always deciding that one branching occurs a little
above or below another, and if we have a notion of north
and south, then this gives a conceptual embedding of a
finite rooted binary tree which matches the living tree,
into the universal one. The rational ends of the univer-
sal one can be considered to be rational numbers with
denominator a power of 2, and so then each end of the
tree is labelled by such a dyadic rational number.
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This is not to say that the dyadic rational numbers have
anything to do with trees, only that we have chosen
for ourselves a classification scheme which is convenient,
which we happen to understand. If I want to describe
one leaf of one tree, I have to have a way to say how
to climb to find it, whether to go north or south at
various times, and these are only my particular instruc-
tions. They are useful in classifying the leaves so that
when one person describes a leaf, another person can
find that same leaf, by following the instructions. The
instructions themselves, the way they are formulated, do
not matter, and in this way coupling schemes in quan-
tum mechanics should not matter either. They should
maybe be considered decoupling schemes, as if a scheme
is organized like a tree, then each end has a unique path,
and there is no difficulty such as two people given differ-
ent instructions, finding the same leaf, incorrectly think-
ing that they have found different leaves.
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Discussion of the problem of nonconvergent in-
tegrals

The difficulty with the fact that the perturbation ac-
tion of ( 1

r3 ) was described by non-convergent integrals
might be because in place of the perturbation action of∑

i(
1
r3i

) we were meant to compose the perturbation ac-

tion of
∑

i(
1
ri

) with that of
∑

i(
1
r2i

). When this is done,

we do obtain the correct sign of the Lamb shift, and if
we choose fmult=4, which would be consistent with us-
ing a Casimir in which the ‘degree’ of r is two, we obtain
a value of the Lamb shift of 0.377, where the observed
value is 0.365 Unfortunately this interpretation fails for
almost every other element.
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The ethics of science

I am going to here interject a correction to something
which I wrote in my Economics text. I wrote that like

those scientists who debunk one after another magic trick,
for the benefit of those few who are fooled by magicians

a possible role of Maths or Philosophy might be to ‘be-
come proficient enough in science to beat the scientists
at their own game, to expose how unethical it is.’

I had been referring to the notion of energy, and con-
servation of energy, for example, the National Academy
K-12 education guidelines which advise school curricula
to require at great length and detail teaching a lenghty
and detailed catechism. A typical quote is

By the end of grade 12. Conservation of energy means that
the total change of energy in any system is always equal
to the total energy transferred into or out of the system.
Energy cannot be created or destroyed, but it can be trans-
ported from one place to another and transferred between
systems. Mathematical expressions, which quantify how
the stored energy in a system depends on its configuration
(e.g., relative positions of charged particles, compression of a
spring) and how kinetic energy depends on mass and speed,
allow the concept of conservation of energy to be used to
predict and describe system behavior.
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Just in an ordinary conversation in the common room,
A. Braun commented to me about how really fair sci-
entists are in their research practise. When the concept
of conservation of energy has needed adjustment, for
example relativistic adjustments, or adjustments to in-
clude transfer between matter and energy, these have
always been consistently done. Any time there has been
any exception to a believed rule, the exception has been
given full, interested attention by all. No one has been
dogmatic about his scientific interpretation about con-
servation of energy.

Although my chairman has disabled my access to the
free library, I can see enough from old textbooks online
to see that spectrographers, especially, in understand-
ing energy levels, have been ethical, cautious, and fair.
For example, Condon and Shortley’s book [4] from 1935,
which was reprinted in several editions until 1959, in-
cludes work of H. N. Russell, not only on the frequencies
of spectral lines related to Russell-Saunders coupling,
but actual use of extensions of Maxwell’s equations to a
new context to explain ratios of intensities of the lines.
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There is something, tangentially related to this, which I
have not mentioned. Schroedinger’s paper, at the point
where is is about to give the solutions to his equation,
says, after describing what are above the values of α and
β such that solutions exist,

Though I cannot enter here upon the exact and rather tire-
some proof of the foregoing statements, it may be interesting
to describe in rough feature the solution...

If we just identify the basic solutions,

Ψ(x, y, z, t) = f1,n,l s

Ψ(x, y, z, t) = A(x, y, z)sin(
h

2π
(S(x, y, z)− tE)

for s homogeneous harmonic of degree l. Even if s de-
pends on t, the f1,n,ls have no spatial oscillating be-
haviour unless A(x, y, z) has cancelling reciprocal oscil-
lations; and S(x, y, z) in the second equation is bounded.
Once tE surpasses S(x, y, z) there are no wavefronts. It
just can’t happen, what Shroedinger wanted, that the
wavefront speed is equal to E/|grad S|.

A standing wave could have moving wavefronts. Putting
aside the tangent bundle or differential forms, just try-
ing to revisualize what Schroedinger wanted to see, one
could write L for the gradient flow of S, with divergence
div(L), and then the Laplacian is

∆(A sin(
2π

h
(S − tE))

=(∆(A)− 4π2

h2
div(L)A) sin(

2π

h
(S − tE)) +

2π

h
L(A) cos(

h

2π
(S − tE)).
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A corresponding and slightly simpler complexified ver-
sion of the right side is

(∆(A)− 4π2

h2
div(L) + i

2π

h
L(A))Aei

2π
h (S−tE).

Schroedinger’s equation now generalizes to the notion
that the amplitude function alone is an eigenfunction
(in the sense of eigenvector) of α + β/r (in the sense of
eigenvalue) with, α and β as we defined earlier, for the
operator

∆− 4π2

h2
div(L) + i

2π

h
L.

That is, Schroedinger’s equation for the amplitude func-
tion A generalizes to

(∆ + i
2π

h
L)A =

4π2

h2
(−2mE − 2me2/r + div(L)) · A.

I have called the operator by the name L, as for example
it is possible to scale elements of the Lie algebra so3

by a radial function g(r) to obtain a few examples of
such vector fields one might wish to consider. In order
to satisfy that the rate of motion of the wavefronts is
E/
√

2m(E − V ) since the hypothetical particle speed
for just L is wr for some constant w we take g(r) =
1
wr

√
2m(E + e2/r). This is based on the notion that the

hypothetical particle speed times the wavefront speed is
equal to E in absolute value.
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For type s orbitals, if we take A to be radially symmet-
rical and L to be such a vector field, then L(A) = 0.
Also div(L) = 0, for example

div(gx
∂

∂y
− gy ∂

∂x
) = x

∂g

∂y
− y∂g

∂x

= (
xy

r
− yx

r
)dg/dr.

Then the equation reduces to the ordinary Schroedinger
equation, so for type s orbitals there are cases when
there are at least some solutions; those for which the am-
plitude equation agrees with the one from Schroedinger’s
unmodified equation; and so there is indeed a type of so-
lution for type s which has the wave front speed which
Schroedinger had asked for, although which is not a
function.

Such solutions can likely be best viewed as differential
forms and the correction to allow moving wavefronts in
some cases may make almost no change to how things
are calculated. It seems interesting to consider beyond
type s orbitals whether the same considerations apply
to other orbitals; then, we need not assume that L is an
element of so3 rescaled by a radial function, only.

The existing notion, unlike the explanation of the in-
tensities of the Russell-Saunders lines, of the frequen-
cies of those lines, does not consider that the wave-
fronts are moving; it rests on the notion that solutions
of Schroedinger’s equation include ‘inherent angular mo-
mentum.’
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But, what was the ‘inherent angular momentum’ sup-
posed to be if the function is, for example, the coordi-
nate function x times the radial function f1,2,1 for a type
p orbital? How on earth do linear forms on three space
have ‘intrinsic angular momentum?’

Attempts to explain the known and verified rational ra-
tios among spectral lines, attributed to various coupling
schemes, rest not only on a notion of intrinsic spin, but
on a notion of intrinsic angular momentum.

I shouldn’t have said that science needs to be overseen.
It is not here, in the origins of scientific thought, where
there is anything unethical. There is weakness, only.
Only because things when they are quantified can seem
beautiful, and one can wish to capture, for example, the
number theoretic structure of the periodic table, or the
infinite beauty of atomic spectra.

And it is not at all unethical that, at the very base of all
our understanding of such things, are equations which
are obviously wrong, which obviously refer to things that
can’t exist, or for which there is no good evidence that
they exist; things which seem to contradict symmetry,
contradict good sense; things which will be abandoned
the first instant when the next researcher has a believ-
able interpretation.

What is unethical is the marketing of research that some-
times happens, which sounds to me like Churchill’s speech
– that also well-intentioned – about the ‘sunlit uplands.’
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I am going to argue a little later that I do regret that
there is no natural locally consistent definition of energy.
All our understanding of the complexities of these spec-
tra is based on shifting sands, and the early researchers
who formulated quantum mechanics wrote that it was
their choice to try to build upon a foundation of a con-
sistent notion of something conserved, something which
might be called energy.

We do not know, if Physics had been intended differ-
ently, whether a notion of such a conserved quantity
would have been a part of the theory, whether it would
have been an important part.

The fact that in ten minutes someone can look at Schroedinger’s
equation and see that it does not do what he hoped,
and see ways it could have and should have been im-
proved, is not meant to be a startling observation. It
is an obvious observation. Every scientist and every re-
searcher knows that the route to an understanding of a
scientific phenomenon is a sequence of stepping stones
across a stream, where each stone could have been put
differently, where what is missing in one aspect of an
explanation, needs to be compensated by extra effort in
another part.
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No scientific researcher has faith in one interpretation,
no scientific researcher has more belief in one technique
or principle, more than that it is here this moment, a
place to try to stand, to peer over that high fence in
hopes of catching a glimpse of meaning, a glimpse of
understanding of what really is the deserved beauty of
scientific observation.

That high fence was built by well-meaning individuals,
teachers, parents, and scholars. It too was built with
the best intentions. People who hope to enthuse their
students, with notions of the wonderful insights which
are promised. The higher, brighter, future which they
will attain with their newfound understanding.

It should not be surprising that any schoolchild, as soon
as he learns a little calcululus, can look at any of the
basic equations upon which all his subsequent learning
is to be based, and object, ‘That does not make sense
to me!’

It seems, always, like students are thick, like they are
dumb, like they need to be pushed to understand, per-
haps.
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But, when they are confused, it usually is because they
had greater hopes for the amount of insight which the
new theories, notations, and practises would be capable
of revealing to them. Just as it is said that as a baby
grows, the learning which takes place is a neural prun-
ing, as a student learns, much of the learning amounts
to learning the ways of thinking which are going to be
rejected as being not rigorous, as being too close to su-
perstition, as being low class, and not how things are
done.

But never, never does an original researcher like Schroedinger
for example ever think that he has answered big ques-
tions, with one formulation, with one idea. He is part
of a conversation, and it could be a conversation with
that student who is discouraged because he does not
understand Maths, and truth be told, it probably is ex-
actly that conversation which takes place, with some-
one not conversant well with the subject, at moments
when changes are made to how things are understood.
Dirac, for example, claimed that Heisenberg did not
know about matrix multiplication in any other way than
a method of combining quantum numbers.

Any beginning student, asks himself, but why didn’t
they ever consider this or this. And, if a beginning stu-
dent were ever eloquent enough to pose the question
directly to researchers who are trying to formulate a
theory, the answer would be ‘we want to consider that,
we only need to know what you were curious about.’
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There was nothing unethical about spectrographers wish-
ing to understand spectra; nor were there any harmful
consequences either. But this is not to say that a spec-
trographer is a muse, is someone who can give advice
about future policy. Spectrographers still do not under-
stand the first things about the spectrum of Hydrogen.
It is as much a mystery as looking at a tree is, and trying
to understand the things growing there. Yet, if someone
replaces the Hydrogen with another gas, they will see
the difference, they will perhaps know what the other
gas is, given a list of choices.

Some of the practical consequences of the curiosity of
spectrographers is the way their research has flourished
over the years, now encompassing nuclear magnetic reso-
nance, and proton spin; making equipment for hospitals,
and imaging equipment.

Such research at times has given possibilities not prece-
dented during human evolution, and nuclear research,
just like petroleum research, is an area where a person
might legitimately understand that if it has not been
possible to make particular discoveries, this would have
been better and safer.

But, it is not possible to remove the possibility of making
some discoveries, only.
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My personal belief is that things in medicine like sutures,
copy other things in technology like sharpened knives.
That there may be a principle to the effect that choices
unprecedented during the vast part of human evolution
are ones which will lead to disaster if they are chosen.
But that this principle has exceptions.

To explain it a way my friend Charles Freeman-Core
once explained this to me, attributing his thinking to
Kant, once a choice has already been made which tran-
scends what was possible during the vast majority of
human evolution, then choosing to disregard that choice
is itself another unprecedented choice.

If we already have, for example, waste leaking from a
power station, and an incidence of cancer, then it is a
mistake to say, let’s cut our losses and forego using an
NMR to investigate the cancer, in order not to compund
the original error.

Then, even a homeopathic principle of medicine could
justify things like the use of nmr in diagnosing and locat-
ing cancer, and radiotherapy to treat it. The principle
that when an action causes disease, sometimes the same
type of action, repeated to a different extent, can be
used to treat that disease. A very low and safe type of
radiation, in the manifestation of an X ray or even a
magnetic field, to find the location of cancer; and then a
very very high dose of gamma radiation, the same which
had caused the cancer, but in a much larger intensity,
to cure it.
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It is not the researchers who popularize new technolo-
gies, who interpret them as a panacea, as is done in
every case without exception.
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First concepts of the Lamb shift

Currently, with the fine structure corrected as we’ve
done, the universe explorer at http://spectrograph.uk gives
the wrong value of the Lamb shift for Hydrogen, the
wrong sign even for the shift which is the original Lamb
shift (though many others seem almost reasonable). Clearly
rather than having a correction term in the Schroedinger
equation it is better to really find the more natural vari-
ant of Schroedinger’s equation. That is, rather than ab-
stractly identifying the Weyl operator with the residue
of the Legendre operator, we should try to give a holo-
morphic description of something generalizing harmonic
two-forms on Euclidean space which restrict after lifting
to the line bundle over real two-dimensional projective
space, and Euler contraction to the one-forms on the
line bundle over the Severi-Brauer variety.

We are working here with sheaves, not global sections
only.

Thus we start with the ordinary projective plane P2.

Then as in functorial affinization of Nash’s manifold or
elsewhere, there is the exact sequence for any coherent
sheaf F

→ Sn−iF⊗ΛiP(F)/torsion→ Sn−i+1F⊗Λi−1P(F)/torsion

→ ...→ Sn(F)/torsion→ 0

which is a resolution of Sn(F). We are going to take the
variety to be P2 and F = OP2(1).
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This gives taking n = 1 (and allowing negative expo-
nents as we can since OP2(1) is invertible of course)

0→ OP2(−2)⊗ Λ3P(OP2(1))

→ OP2(−1)⊗ Λ2P(OP2(1))

→ P(OP2(1))

→ OP2(1)

→ 0

with augmentation kernels in this order,

OP2(1)⊗ Λ2ΩP2, OP2(1)⊗ Λ1ΩP2, OP2(1)⊗ Λ0ΩP2.

Now, what we will do is to let X → P2 be the total
space of OP2(−1), and let π be the bundle projection,
and apply π∗. We get (writing E ⊂ X for P2 viewed as
the zero section divisor)

0→ OX(2E)⊗Λ3(ΩX(logE)(−E))→ OX(E)⊗Λ2(ΩX(logE)(−E))

→ Λ1ΩX(logE)(−E)→ OX(−E)⊗Λ0(ΩX(logE)(−E)))→ 0,

and note that the last two terms are only

ΩX(logE)(−E)→ O(−E)→ 0.

These are subsheaves of the exterior powers of ΩX , and
in fact the maps here are exactly the restrictions of the
contraction which we called iε, the Euler contraction
in the direction of the line bundle fibers, the fibers of
X → P .

Moreover, the DeRham differential preserves all these
subsheaves, and when we write

iεd+ diε = ε− 0
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now ε is invertible, multiplying each term by a nonzero
degree, so the maps iε and d can be viewed as a pair
of chain homotopies trivializing the isomorphism ε, and
proving that the complex is contractible.

Very interestingly, now the sequence of augmentation
kernels is

OX(−E)⊗π∗Λ2ΩP , OX(−E)⊗π∗Λ2ΩP , OX(−E)⊗π∗Λ1ΩP , OX(−E)⊗π∗Λ0ΩP .

Here these are just the same as the pullbacks of the ex-
terior powers of ΩP2, each twisted only by OP2(1) before
pulling back.

So we have differential forms of all degrees on the pro-
jective plane, all allowed a simple pole on a hyperplane
in every coefficient.

Now, an important point is I have nowhere taken any
global sections. these are complexes of sheaves, and they
are complexes of coherent sheaves except the map d is
not a map of coherent sheaves.

But what we have is that OX(E)⊗ Λ2(ΩX(logE)(−E))
which we can also call Λ2(ΩX(logE))(−E) is a direct
sum according to the decomposition of the isomorphism
ε into the direct sum

diε + iεd

of mutually annihilating operators.

So the local sections of closed forms within that sheaf are
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all in the image of diε. And so the local sections of closed
forms are deRham differentials of sections of one forms
in the image of iε. So they are deRham differentials of
sections of one-forms in the kernel of iε, that is, in the
augmentation kernel, which we already know is

OX(−E)⊗ π∗ΩP2

This sheaf (more rigorously its pushdown to P2) is

ΩP2(1)⊕ ΩP2(2)⊕ ΩP2(3)⊕ ......

That is, it is ΩP2 tensor on P2 with the direct sum of
OP2(i) for i = 1, 2, 3, 4, ....

So to get closed 2 forms on X we just apply the deRham
differential to these.

So closed 2 forms on X are isomorphic to this sheaf on
X modulo its intersection with the kernel of d, which
needn’t be a coherent kernel.

Now this next part is not done, but I am thinking that
this sheaf intersects the kernel of d trivially, just because
I haven’t been able to find any nonzero sections in the
intersection yet.

If that is so, then the closed 2 forms on X which be-
long to our subsheaf are in fact isomorphic to a coherent
holomorphic sheaf after all, it is what I was mentioning
before

ΩP2(1)⊕ ΩP2(2)⊕ .....
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When I said that the last 2 terms are only ΩX(logE)(−E)→
OX(−E)→ 0, now it is the global sections of the kernel
of this that we are considering, and this is exactly the
kernel of the map OX ⊕ OX ⊕ OX → OX(−E) com-
ing from the fact that three global sections generate the
ideal sheaf OX(−E).

In fact

π∗OX = OP2 ⊕OP2(1)⊕OP2(2).....

and the map is induced by

OP2 ⊕OP2 ⊕OP2 → OP2(1)

So on global sections this is exactly the end of the Koszul
complex of the ideal (x, y, z) ⊂ C[x, y, z], and the 2
forms upon which ε acts by i + 1 will correspond to
polynomials of homogeneous degree i. The dimension of
the global sections of the kernel is

3

(
i+ 2

2

)
−
(
i+ 3

2

)
=

3

2
(i2 + 3i+ 2)− 1

2
(i2 + 5i+ 6)

= i2 + 2i.
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A question about Pauli exclusion

One thing that the detailed tree-like classification does
is it clarifies a question whether or not Pauli Exclusion
probably should be strengthened a bit, from the stand-
point of understanding it in terms of differentials.

For instance, for Magnesium, theoretically there is an
electron configuration

1s 2s 2p4 2d 3d 6p4

although one would never find ‘unfilled orbitals’ low
down like that in nature. But the spectral lines if such
a thing existed, according to combinatorial Pauli Exclu-
sion, would consider it to be a tensor product (I hope
that the meaning of this abbreviated notation is clear)

(1s 6p4 2d)⊗ (2s 2p4 3d)

The issue that would make it be a tensor product is an
issue about differentials and rational function fields.

That is, the radial part of the first factor has exponential
integrating factor (using units so β = 1) e−r−4r/36−r/4

and the radial part of the second factor has integrating
factor e−r/4−4r/4−r/9.

Even though the sequences 1, 6, 6, 6, 6, 2 and 2, 2, 2, 2, 2, 3
are different,they have the same number of terms, and
the sum of reciprocal squares is the same and that means
that if I wedge product the radial functions, in a case
when the azimuthal functions are the same, I will get
zero.
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That is, the wedge product of differentials when, it is
nonzero this is the usual thing about how different pow-
ers of the exponential function are linearly independent
over the rational function field in r. Their differentials
over r are linearly independent only because the different
powers of e−r are.

Pauli exclusion does not rule out spectral lines coming
from representations which are summands of the tensor
power modulo the exterior power.

But if the explanation of Pauli exclusion is this simple
fact about differentials, then the exclusion rule should
apply higher up in the tree, and more lines should be
pruned away.

This example in the case of Magnesium, of course the
javascript will show that the extra lines are there.

The actual data will not have them for reasons that the
energy level is far above the ionization limit.

I wonder if it is possible to find examples of lines which
should be ruled out by the differential forms formulation
depending on independence of radial functions, but not
by classical Pauli exclusion OR by being above the ion-
ization limit, and which interpretation will be supported
by the experimental evidence.
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The notion of probability

There is a sense in which I should correct what I said
in ‘unification of the various coupling schemes.’ I had
been implicitly understanding things in terms of the de-
composition of the solution space, which derives from
the decomposition of the Hydrogen solution space with
central charge only, as what I think is a basis of L2(R3).

That is to say, there is a type of ‘spectral theorem’ which
is still true when one speaks of eigenfunctions rather
than eigenvalues; this gives a natural direct sum decom-
position of the vector space span of the basic Hydro-
gen solutions, into parts indexed indeed by the quantum
numbers l and n.

For example, for the case of the radial functions of type
s, we might argue like this: the Laplacian in the action
on analytic functions of the radius r, is just the conjugate

r−1 ◦ (
d

dr
)2 ◦ r

with some adjustment for what we mean by r−1 applied
to a constant function. Thus the Schroedinger equation
for constants α, β

∆ f(r) = (α + β/r)f(r)

can be written if we take h(r) = rf(r) as

(
d

dr
)2h(r) = (α + β/r)h(r).
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Now, amusingly, the L2 integral of f(r) as a function
on three dimensional space is the integral with respect
to the differential form 4πr2dr on the positive real line,
and thus under our conjugation the L2 integral of the
differential form coming from a product of two solutions
4πr2f1(r)f2(r)dr is just 4πh1(r)h2(r)dr. That is, as well
as converting the Laplacian into the ordinary second
derivative, the conjugation by r converts the L2 integral
on three dimensional space to the L2 integral on the line
times the constant 4π.

Finally one can replace d/dr by a sum d/dr+λ by mak-
ing one further substitution, considering h(r) = g(r)e−λr

In this way, the vector space span of the basic Hy-
drogen solutions for type s is isomorphic to the poly-
nomial solutions of the ordinary differential equation
(d/dr + λ)2g(r) = (α + β/r)g(r). This notion leads im-
mediately to the constraints

α = λ2

β = 2nλ

with n the polynomial degree, and whence α = β2

4n2 .

The issue now is, why should eigenfunctions for different
choices of α, β be orthogonal? Let’s just argue roughly
here and omit careful checkign. For the functions h(r)
this is orthogonality in L2(R), and one way of under-
standing this is to write, taking primes to mean the
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derivative with respect to r

0 =

∫ ∞
0

(h′1(r)h2(r))
′dr

=

∫ ∞
0

h′′1(r)h2(r)dr +

∫ ∞
0

h′1(r)h
′
2(r)dr.

Subtracting the same equation with h1 and h2 inter-
changed gives∫ ∞

0

h′′1(r)h2(r)dr =

∫ ∞
0

h1(r)h
′′
2(r)dr.

Now, using the Schroedinger equation, transformed so
that the operator is just the second derivative, if we have

h′′1(r) = (α1 + β/r)h1(r)

and
h′′2(r) = (α2 + β/r)h2(r)

(note the β should be the same for both h1 and h2) then
each integral is a sum of two terms, the one involving β
equal for both and may be removed, and we have just as
for the spectral theorem that the integral is zero unless
α1 = α2.

For the azimuthal parts the argument is easier but rather
than describing a Hilbert space basis of L2(R3) one should
think that what is being determined is exactly the or-
thogonal complements of sums of the wave function spaces
by orbitals, which are used in the perturbation analysis
for the electrostatic effect. In other words, that there
was no artificial choice of basis that needed to be made,
and no artificial choice of Hilbert space structure that
needed to be made.
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I have not checked any of these calculations carefully, for
instance whether the functions described above really
are zero at r = 0, nor is this the important point here.
Nor whether what we are describing is a Hilbert space
structure on L2(R3). It really does seem like it should
be possible using the description of each homogeneous
polynomial as a sum of homogeneous harmonics times
even powers of r, together with the fact that functions
of r are in the L2 closure of the analytic L2 functions
in x, y, z, that any choice of orthonormal bases of the
homogeneous harmonic polynomials times all the radial
functions indexed by n which can be attached to those
of degree l, provide a Hilbert space basis of L2(R3).

The point is, if one relies on such a notion, or relies on
the L2 inner product of such functions, then one can
justify what I said in dispensing with any notion that
different orbit-orbit coupling schemes should give rise to
different calculations of spectra.

Because the orthogonal complements are determined when
the electrostatic term is present only with coefficient
zero, and that is all that is needed for the perturbation
analysis.
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But, here is a rather important point: even in cases
when there are no repeated term symbols (as is true in
every ground state I’ve seen), and so the space of wave
functions in each electron configuration has a direct sum
decomposition first by term symbols and then by the fine
levels, the overall decomposition is of course far from
multiplicity-free. The tree-like structure of the coupling
scheme can serve to hide this fact.

If one did not think that the L2 inner product were
sacrosanct, then there might well be only a filtration,
detrmined by the Aufbau (as arbitrary as that is), and
no natural splitting of this filtration.

This is precedented in easy algebra for example in Serre’s
book about representations of finite groups, where he
mentions that the characters of a finite group comprise a
Hilbert space. But the characters only determine an iso-
typical decomposition, and one must think more deeply
to obtain an irreducible decomposition.

It seems, in the way that the Clebsch-Gordan rule or its
generalizations to other algebraic groups arises, that it
arises in cases when one first considers a tensor prod-
uct of line bundles over a cartesian product (each pulled
back via a different projection) and then to get the ten-
sor product of the global sections, one cannot merely
restrict the resulting tensor product line bundle to the
diagonal, but one must use an infinitesimal neighbour-
hood of the diagonal. And what is natural then is the
filtration by infinitesimal neighbourhoods.
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If one chooses different coupling schemes, as a way of in-
dexing isomorphism types, in the absence of any sacro-
sanct choice of any Hilbert space structure, then legit-
imately they might describe other subspaces than the
ones which can be obtained by combining the Aufbau
filtration with the result of repeated orthogonal comple-
ments. And in that case, it is not true that the coupling
schemes are unified.

Now, people often interpret the meaning of an absolute
L2 norm as related to probability.

In familiar games, one can speak of absolute probability.
If I tell you that at a carnival, there are three gambling
machines, each with a fixed rate of payoff, say each of
which may or may not produce a 100 pound prize, and if
I tell you the rate of payoff of the possible machines, but
not which is which, then each time you pull a lever and
record whether you have won or lost, the probability of
winning for each machine changes.

There is a very clear uniformity to the information which
I’ve given to you, and the information which I’ve with-
held. You can imagine a different possible world for
each permutation of the gambling machines, and right-
fully assign each possible world equal probability with
the others at the outset, and with each new result, a win
or failure to win, you can adjust the probabilities of the
possible worlds, so that the sum over all permutations
adds to one.
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But the person who has set up this set of possible worlds
is me, the carnival organizer, if I’ve (truthfully and known
truthfully etc ) told you about the probabilities but
withheld telling you which machine is which.

When you are dealing not with a carnival organizer, but
with nature itself, there is a question whether it ever
made sense to speak of ‘absolute’ probabilites. If it
is the case that different coupling schemes really need
to be understood as giving rise to different calculations
of spectral lines, we have to begin to question whether
there will ever be an absolute notion of probability in
nature.
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Concluding remark

To end on a somewhat more optimistic note, having un-
derstood Schroedinger’s paper, at least the first part of
it, I really am enthusiastic for the interpretation he has
taken for wave functions. Yet also, now understanding
this too for the first time, the Hamiltonian approach to
physics seems deeply insightful. Yet it is not connected
with Schroedinger’s idea; although he said it is known
it is not.

Without an understanding of relativity it may be impos-
sible to connect Schroedinger’s wave idea with Hamil-
ton’s idea. But there are inklings that if they can be
connected, paradoxes like electron spin, half-integral az-
imuthal quantum numbers, the Bohm-Aharanov effect,
and indeed the difference between elelectricity and mag-
netism, will all be simply explained together.

What would be needed is that the form ηω should not be
closed – in cases when it is closed the Hamiltonian theory
degenerates – but it would be closed along paths and
since it is a form on the tangent bundle these are paths
in the tangent bundle – it is a section of the pullback of
forms from M but should not be a pullback of one form.
And by contrast, its Lie derivative which is not anything
like a pullback of a one form from M does need to be
closed. Schroedinger imagined that ηω is closed, and
the fact its Lie derivative is closed would have followed
from that. To say that it should be closed when the
right form ηω is found is to say that one has some faith
that Hamiltonian functions should exist somewhere.
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The necessary hypotheses of such a hope, of a natural
torsion free connection, on the configuration space M ,
whose associated involutive vector field sends a natural
appropriately nondegenerate – and therefore non-closed
– section of the pullback of one-forms on M to a closed
one-form on the tangent bundle, may not be understood
together any other way except relativistically.
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The false fine structure

Here is the issue: let’s go back for a moment to the
more classical understanding of ‘spin’ in which we just
replicate our space of wave functions; so we consider
the artificially excited configuration 2p2 for Helium as
a fifteen dimensional space of wave functions which we
consider to be merely the exterior square of a direct sum
of two three dimensional representations.

Now, the electrostatic perturbation has a multipole ex-
pansion in which, not surprisingly, the dipole term is
dominant, other terms insignificant. And it is surely ro-
tationally symmetric. Yet it is not actually true that the
Casimir for space rotations commutes with this pertur-
bation matrix, as we have calculated it explicitly above.

The problem can be seen if we focus on the nine dimen-
sional space of wave functions which would be called
those for which the electrons have ‘opposite spin;’ it
is the tensor product of the two basic representations
within the exterior algebra on the direct sum.
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In this section we are not considering the action on ‘spin’
coordinates so there is no harm going ahead and consid-
ering the basic one forms, and writing our nine dimen-
sional space as a space of one-forms on the Severi-Brauer
variety; and in the complexification the basis is

f2,2,1v
2du∧f2,2,1v

2dv, f2,2,1v
2du∧f2,2,1uvdv, f2,2,1v

2du∧f2,2,1u
2dv

f2,2,1uvdu∧f2,2,1v
2dv, f2,2,1uvdu∧f2,2,1uvdv, f2,2,1uvdu∧f2,2,1u

2dv

f2,2,1u
2du∧f2,2,1v

2dv, f2,2,1u
2du∧f2,2,1uvdv, f2,2,1u

2du∧f2,2,1u
2dv

with the wedge product considered not to commute with
u or v ( eventually to be viewed as differentials them-
selves).

The operator v∂/∂u annihilates the left factor of each
of the first three terms, so the action on the first three
terms is caused by the second factor; the third goes to
twice the second, the second to the first.

The inner product here is no different than for the ten-
sor product (there is no ‘exchange’ term since du and
dv are unequal), and when one integrates the multipole
expansion one sees that the dipole perturbation of each
of the first three terms projects by zero to the other two,
while the self-projections act in the number-theoretic ra-
tio [158 : 149 : 158].

The lowering operator simply does not commute with
the dominant dipole term in the electrostatic perturba-
tion action.
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If it does not commute with even one lowering operator,
it is not going to commute with the rotational Casimir,
and it is not rotationally symmetric.

What can cause this apparent paradox, whereby a rota-
tionally symmetric Hilbert space structure has a symme-
try which can be broken by just taking a tensor square?

The answer is that there are as we mentioned two differ-
ent notions of angle in ordinary Euclidean space. One
is that we resolve the ordinary double point singularity
in the hypersurface x2 + y2 + z2 = r2, and then choose
a real rational point of the exceptional divisor.

And a second totally different concept of angle is that we
look within the complex exceptional divisor, abstractly
isomorphic to P1 × P1 at the branching locus, a Severi-
Brauer variety whose moduli of irreducible coherent sheaves
form a real projective plane, topologically, whose uni-
versal (double) cover is a Riemann sphere which is the
diagonal complex variety within P1 × P1.

We have drawn diagrams containing both spheres, both
concepts of angle simultaneously. But the point is, the
failure of rotational symmetry in the Hilbert space struc-
ture is not related to the fact that we are considering
perturbations – it is not related to a notion that ro-
tational symmetry fails to imply differential rotational
symmetry. Rather, it is caused because there is a sense
in which the Hilbert space structure never was rotation-
ally symmetric from the start.
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When I have said that it was, I was speaking only ap-
proximately, and the result is that even before we make
any change which should have created the fine structure,
there has been a false fine structure, and the actual spec-
trum (in the sense of eigenvalues) is affected by this. So
really what we calculate is “fine+error,” and also we can
calculate “error” by using the classical calculation (and
without any Casimir term either), and when we use fine
correction in the Explorer, what we really calculate is
(fine+error) - error. But the two notions of error are not
really the same, and, just as our correction to the coarse
structure only hints at an understanding which does not
make artificial use of reciprocal sums of squares, this,
our final correction to the fine structure only hints at
a comprehension of ordinary angles in Euclidean space
which does not confound the two interpretations.
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Electron spin and Pauli exclusion

In the case of both ‘spin’ and ‘exclusion,’ the intuition
which the familiar names sometimes connote is that an
electron is a ball, such as a ball in a sports game, and it
might be spinning; and that somehow these balls cannot
occupy the same space when you put them away on the
shelf.

There is nothing wrong with thinking like this, except
it is dangerous if it gives a person confidence that they
can understand the way ideas change or generalize in a
similar manner.

I like the way that the formulism works nowadays, that
people write down a potential function, say ‘this is the
Hamiltonian,’ and then there is a sort of dogma that
where the Hamiltonian has px you write ∂/∂x, and trans-
port yourself into a different world by a sort of analogy.

And to have analogies for understanding ‘spin’ and ‘ex-
clusion’ etc. And it is maybe appealling to have discus-
sions like a footnote in Atkins chemistry book, speaking
of the relativistic correction, as if one is standing upon
the nucleus and watching the electron orbiting, and ap-
plying a relativistic correction.
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The notion of a relativistic ‘correction’ is an interest-
ing notion too. The notion that relativity means every-
thing is sort of right in a classical limit, but not quite
right, and we have to correct things to explain why pro-
pogatin of electromagnetic radiation is ‘always at a con-
stant speed.’

But, one has to understand that all this type of thinking
is dangerous too. It is saying, as long as you follow the
dogma, you can be completely sure that your conclusions
will be right.

And, here is where I should mention Becky Sloan and
Joseph Pelling’s video ‘Don’t hug me I’m scared.’ The
notepad character says “Come one! Take another look!”
and leads the other characters to think creatively in one
way, “I can see a cat, I can see a hat,...”

The notion of standing on the nucleus of an atom and
imagining what you might see is creative, and it is along
the lines of admired creative thinking of earlier physi-
cists, or earlier explorers, adventurers, exploring the sea
for new continents, or fictional heroes exploring space as
in Star Trek for ‘new life, new civilizations.’

The notion is as if to say, ‘this is where we will be,
right there on the nucleus, standing there.’ It is like
the film ‘Honey, I shrunk the kids,’ or countless fictions,
Gulliver’s travels, for example.

And that it is admirable to say ‘If we can’t physically
do it, we can imagine it, there are no limits to where our
imagination takes us.’
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But one has to understand that one is following one’s
own wish to combine ideas, in a way that yes has worked
for humans throughout our existence.

I have written before about how an animal rights scholar,
some time ago, had written about the experiences of a
sow in captivity, that when it is about to give birth,
it uses its snout to push along the concrete, as if it
were building a nest. That, if the natural plants that
had been there during the significant part of the crea-
ture’s evolution had gone extinct, we could see what
they should have been, by the animal’s behaviour. That
it is unintentionally drawing for us a painting of nature
which no longer exists.

When human thought is disconnected from nature as it
now is, then in looking at how people interpret chemical
spectra and chemical reactions, at the things which they
write on their blackboards, one sees not anything related
to the phenomena they see in front of them, but things
with more depth, more detail.

Yet, this depth is clearly connected to things that no
longer exist in the abstract context in which the person
is thinking. The confidence that our imagination will
take us to a new and wonderful place when we think
creatively, has become a dogmatic concept, not because
anyone has been evil, but because of false hope.
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It was not the right conclusion

Now having thought about this for a few hours, the con-
clusion seems very naive.

Having explained the spectrum of Hydrogen by the no-
tion of energy levels – that the frequencies in the spec-
trum are differences of frequencies corresponding to fixed
energy levels – there was maybe some elation, some wish
to generalize the success further. Some infectious enthu-
siasm, perhaps.

I had forgotten some of my own papers, where I’d real-
ized that this type of thing does happen, for polynomial
vector fields in the plane, as Poincare had asked. But
the reason why it did happen was essentially a grungy
reason. And not what will happen in general.

The whole point of Chaos theory had been to show that
general dynamical systems can never in any way fall into
energy levels like that. And, the hope for a Hamiltonian,
of course, was two-pronged. On the one hand was the
notion that a single closed one-form, when it is locally
a differential of a function H, then however one may
write a particular associated one form as

∑
pid
′qi the

ordinary, as it were Euclidean, partial derivatives of H
with respect to the qi determine everything that hap-
pens. And so one form and function do also. But a
second aspect of it, which I’d not been paying attention
to, is that the orbits locally preserve level sets of H.
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But, really, very honestly, one has to ask whether any
enthusiasm for such a phenomenon was a disguised re-
flection of a residue of hope for the notion that there is
such a phenomenon in nature as ‘conservation of energy,’
or a consistent notion of ‘energy.’

If one thinks about it, such a notion would be an attempt
to continue to capitalize on the success of finding that
the spectrum of Hydrogen had been explained by ‘energy
levels.’ The source of these comes down to two things,
that we are describing things by polynomials, and poly-
nomials have degrees l, and secondly that the ordinary
differential equation xy′′+ (2 + 2l)y′−Ayx−By = 0 for
y as a function of x has particular entire solutions. But,
for example, the notion that we describe things by poly-
nomials and polynomials have degrees, comes down to
multilinear algebra, and this to a belief in a Euclidean
structure. Perhaps if we anyway have accepted mani-
folds, we should accept a local Euclidean structure in
this precise sense.

The fact that different atoms of Hydrogen have the same
energy levels would be because we’d assumed the same
constants (which played the role of the mass, charge of
the electron, etc), and the three-dimensional differential
equation from which this ordinary differential equation
arises is applied as though space has Euclidean transla-
tions, etc.

Then the hope for a local Hamiltonian would be a hope
that energy levels make sense locally without any con-
tradiction.
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One of the things which I didn’t mention is another
hope which people have, that the form ηω would be
the ‘canonical’ form on a cotangent bundle, somehow,
by some transformation of thought. That is, that there
is some notion of relativity that gives rise to a canonical
local consistency of energy levels.

But if one really is honest about the source for such
a hope, it is a hope to continue the success of finding
that the spectrum of hydrogen had been explained as
differences of a quantity that takes fewer, simpler values
and in that sense can be seen as more intrinsic, and
which agrees with conservation of energy in Newtonian
physics.

By the way, regarding the closed form ω, we know it
cannot be in general an exact form. Results of chaos
theory prove that it is impossible, and of course this is
just the same old notion that classical integrals do not
in general exist at all.

It may easily be possible to prove using methods like
Sard’s theorem that there is always a locally consistent
definition of energy. But that is different from saying
that there is a canonical locally consistent definition of
energy.

What I really have to question is why I was said I ‘hope’
for such a thing.
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One reason is that I had thought of the local Hamilto-
nian as like a nice new computer, something that will
do work for me, or maybe for people in the future, in
helping me understand the action of nature, and to cal-
culate what will happen in any situation. Surely, like
the magic bag of Felix the Cat cartoons, this would be
a nice thing.

Yet, at the time radiation was being discovered, people
loved the idea so much that they put radioactive ma-
terials into their food, into their cosmetics, into their
toys. They believed that since electromagnetic radia-
tion is a generalization of sunlight, it may have all the
health giving properties of sunlight.

Even after Madame Curie had ruined her health, and
generations of scientists had died terrible deaths from
cancer, there was a notion that there is a consistent
physics that will explain the future to us, that there is
something called electromagnetic radiation.
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In the popular mind there is a mistaken connection be-
tween the work of physicists like Schroedinger, and of
those like Madame Curie; she discovered by trial and
error what was interpreted as lots of energy stored in
atoms, and the concept does make sense certainly, lo-
cally. Perhaps the vast range of orders of magnitude,
from such tiny differences of energy as changes in the
values of l create, to the vast differences that Curie’s
work and others brought about on a larger scale, made
it convincing that there should be a Euclidean scale of
values from the very large to the very small, a consis-
tent ruler or thermometer, against which all things can
be measured.

For me to have concluded that such a scale, even locally,
depends on relativistic notions, really is also, though un-
intentionally, a political statement. Because, relativis-
tic notions, when they are analyzed, become notions of
agreement. This is not agreement in the sense of diplo-
macy, only, but agreement of ideas, when considered
from different perspectives, and by different conscious
entities.
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Links:

Northern Lights http://spectrograph.uk/index.html?pmult=1.5&allowForbidden=true&panLeft=160&scaleWidth=4&panLeftSpeed=-.002&scaleWidthSpeed=.15&dofine.checked=true&autocorrect.checked=false&nextt2(8)

They represent transitions between even functions,

The green Magnesium star triplet. Press ‘next config’ a
few times after the calculation is definitely done, waiting
each time, to see the yellow one. http://spectrograph.uk/index.html?panLeft=160&scaleWidth=4&panLeftSpeed=-.002&scaleWidthSpeed=.15&emult=4.5&autocorrect.checked=false&usepmults.checked=false&dofine.checked=true&finecorrect.checked=false&nextt2(12)&nextt2(12)&nextt2(12).
Both are reversed because the p orbital is more than half
full.

The familiar bright yellow Sodium Doublethttp://spectrograph.uk/index.html?autocorrect.checked=false&dofine.checked=true&nextt2(11)&nextt2(11)&panLeft=280&scaleWidth=20&panLeftSpeed=-3&scaleWidthSpeed=1,

the Carbon spectrum, perhaps reminiscent of fire, http://spectrograph.uk/index.html?panLeft=280&scaleWidth=20&panLeftSpeed=1&scaleWidthSpeed=.1&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)

The variables in the url such as panLeftSpeed or scaleWidth
refer to the spectrograph display, and can be changed
with the arrow keys.

And the unadorned explorer http://spectrograph.uk.

The arrow keys are for looking closer, and ‘compare ex-
ternal’ compares with what is actually found in nature.

287

http://spectrograph.uk/index.html?pmult=1.5&allowForbidden=true&panLeft=160&scaleWidth=4&panLeftSpeed=-.002&scaleWidthSpeed=.15&dofine.checked=true&autocorrect.checked=false&nextt2(8)
http://spectrograph.uk/index.html?panLeft=160&scaleWidth=4&panLeftSpeed=-.002&scaleWidthSpeed=.15&emult=4.5&autocorrect.checked=false&usepmults.checked=false&dofine.checked=true&finecorrect.checked=false&nextt2(12)&nextt2(12)&nextt2(12)
http://spectrograph.uk/index.html?autocorrect.checked=false&dofine.checked=true&nextt2(11)&nextt2(11)&panLeft=280&scaleWidth=20&panLeftSpeed=-3&scaleWidthSpeed=1
http://spectrograph.uk/index.html?panLeft=280&scaleWidth=20&panLeftSpeed=1&scaleWidthSpeed=.1&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)&nextt2(6)
http://spectrograph.uk
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